

UNIVERSITÀ

di **VERONA**

municipal wastewater

Prof. Eng. Francesco Fatone, PhD @FFatone)

LabICAB, University of Verona (francesco.fatone@univr.it)

Coordinator of the EU Horizon2020 «SMART-Plant» Innovation A (@smart_plant_eu)

Scientific Executive Board of ECOMONDO (www.ecomc

Who we are and what we do

GreenAwards L'Italia che sa innovare / 10

Qui recuperiamo le risorse cadute nell'acqua sporca

Fertilizzanti, metalli, scarti chimici. Al LabICAB li tirano fuori dagli scarichi, trasformando i **depuratori** in fabbriche di sostanze riciclate

di Micaela De Medici

gni volta che tirate lo scarico in bagno, quando lavate i piatti o fate la doccia, avete mai pensato che le acque reflue potrebbero essere una miniera urbana ecosostenibile dalla quale recuperare energia, fertilizzanti, sostanze chimiche e metalli? Dovreste farlo. Perché, in effetti, le cose stanno proprio così. Di fatto, dagli scarichi di ogni persona si potrebbero recuperare acqua riutilizzabile, cellulosa, polimeri biodegradabili, fosforo, azoto, metano e fertilizzante organico. Al LabICAB, il Laboratorio di Ingegneria Chimica dell'Ambiente e dei Bioprocessi dell'Università di Verona, si lavora proprio in questa direzione: si ricercano, si sviluppano e si trasferiscono processi e impianti biotecnologici innovativi che possano rendere efficienti i depuratori di acque reflue urbane già esistenti, fino a trasformarli in "fabbriche di risorse recuperate", sostenibili dal punto di vista tecnico, economico e ambientale, con attenzione alle emissioni di gas serra (carbon footprint). Lo studio di questi temi risale agli anni Ottanta quando Franco Cecchi, professore ordinario di Impianti chimici all'Università di Verona, per primo concepisce l'idea del depuratore come "centro urbano multifunzionale", utilizzabile per trattare diversi flussi di scarto urbani, come le acque reflue e la frazione organica dei rifiuti solidi, per recuperare biogas - dunque

energia ---, fertilizzanti e ammendanti (cioè fertilizzanti che migliorano le caratteristiche fisiche del suolo) Svi luppando queste idee innovative si arriva, una quindicina di anni fa, all'impianto di depurazione urbano di Treviso: allora esempio pionieristico in Europa proprio per lo schema che includeva il recupero di biogas e nutrienti dalla co-digestione di fanghi e Forsu (Frazione Organica del Rifiuto Solido Urbano, cioè il materiale raccolto dalla raccolta differenziata dell'organico, altrimenti detto umido), il recupero di fosforo sotto forma di struvite e il processo biologico per produrre scarico finale a bassissimo contenuto di nutrienti. Da allora il LabICAB è cresciuto fino ad affermarsi come punto di riferimento in Italia e all'estero per il trattamento di acque reflue e di rifiuti organici. La sede del dipartimento è sempre a Verona: le ricerche hanno inizio nei laboratori, ma l'applicazione viene realizzata dove si trovano materialmente i rifiuti e gli impianti --- da Treviso a Catania, da Porto Marghera alla Toscana. Non solo. Oggi Francesco Fatone e David

«La nostra è una ricerca applicata. Partiamo dagli impianti esistenti per rinnovarli e renderli efficienti, ottimizzando i consumi» SERIEGREEN AWARDS 2015 Green Award Winner 2015

Leading position in the EU R&I: Coordinator Horizon2020 «SMART-Plant»

the green technologies expo

Our main R&D&I topics

- Design, operation and optimization of innovative wastewater treatment processes directed towards the circular economy concept: convert waste streams into value streams
 - Nutrients recovery
 - Energy production
 - Bioplastics production
 - Carbon and environmental footprint reduction
- Anaerobic (co)digestion of biowaste
- Treatment of supernatant from anaerobic digestion for nutrients removal or recovery and bioplastics production
- Occurrence and removal of emerging contaminants during waste and wastewater

treatment processes

Bringing R&D&I to full scale: example of the new wwtp of Catania

Industrial WWTP Porto Marghera, Venice, Italy (EU largest industrial Membrane BioReactor)

Our ongoing EU R&D&I projects (within Horizon2020)

EU H2020 – SMART-Plant

Scale-up of low-carbon footprint material recovery techniques in existing wastewater treatment plants

EU H2020 – IntCatch

Development and application of Novel, Integrated Tools for monitoring and managing Catchments

EU H2020 - ENERWATER

Standard method and online tool for assessing and improving the energy efficiency of waste water treatment plants

EU Water JPI – Pioneer STP

Waste

Waste

The potential of innovative technologies to improve sustainability of sewage treatment plants

EU H2020 – RES URBIS

REsources from URban Blo-waSte

EU H2020 – NoAW

Innovative approaches to turn agricultural waste into ecological and economic assets

Contents of the presentation

- 1 Linear vs Circular Economy
 - 2 ECOMONDO: #1 Italian platform for circular econd
 - SMART-Plant: circular management of wastewate
 - Urban mining by integration of organic waste treatments and municipal wastewater
- 5 SP-JV to deliver custom solutions for valorizing recovered chemicals

3

4

The Linear Economy

- Current economic model of 'Take-Make-Dispose'
- World as unlimited resource and waste bin;
- 65 billion tonnes of raw materials enter the economic system, p.a.;
- Around 60% of waste ends up in landfill...

Supported by the Horizon 2020 Framework Programme of the European Union

the green technologies expo

The circular economy

Circular Economy: imitation of natural cycles

The circular economy requires a very careful management of two material flows:

- biological nutrients (biomasses) to be returned safely to the biosphere to restore the natural capital;
- technical nutrients (materials) designed to keep quality and circulate without entering back in the biosphere

Circular Economy: our choice

The European Commission has adopted an ambitious new Circular Economy Package to stimulate Europe's transition towards a circular economy that will boost global competitiveness, foster sustainable economic growth and generate new jobs.

This transition will be supported financially by the European Structural & Investment Funds (ESIF), which include €5.5 billion for waste management.

ECOMONDO: the platform of the circular economy www.ecomondo.co m

ECOMONDO

000000

h collaborazione con

16

🚺 UTILITALIA

www.ecomondo.com

the green technologies expo

THE GREEN TECHNOLOGIES EXPO

La vetrina più completa sulle soluzioni tecnologiche più avanzate e sostenibili per la corretta gestione e valorizzazione del rifiuto.

La sezione espositiva dedicata a tutte le fasi della filiera del ciclo idrico integrato, dalla captazione alla restituzione all'ambiente.

ENERGY

L'appuntamento dedicato alle energie sostenibili, all'efficienza energetica nell'industria, alle smart cities.

Supported by the Horizon 2020 Framework Programme of the European Union

MARTEDI

08 - 11

VENERDI

CIRCULAR ECONOMY

NOVEMBRE 2016

SVILUPPO SOSTENIBILE

FENASAN

ľ'IALIA

RIMINI ITALY

Water in the circular economy? The wastewater treatment plant is the key enabling element of the value chain

Conventional WWTP

Advanced and circular WWTP

Supported by the Horizon 2020 Framework Programme of the European Union

the green technologies expo

Resources embedded to municipal wastewater	
Parameter	Valu e
Reusable water (m ³ /capita year)	91,3
Cellulose (kg/capita year)	6,6
Biopolymers; PHA (kg/capita year)	3,3
Phosphorus in P precursors (kg/capita year)	0,9
Nitrogen in N precursors (kg/capita year)	4,6
Methane (m ³ / capita year)	12,8
Saleh Gard and Van Loosdrecht (2004) <i>Biotechnology Advances</i> 22, 261-279 post) (kg/capita year)	9,1
key Enabling Strategy: upstream solid	2

concentration, integration and innovation of the

The overall target of SMART-Plant is to validate and to address to the market a portfolio of SMARTechnologies that, singularly or combined, can renovate and upgrade existing wastewater treatment plants and give the added value of instigating the paradigm change towards efficient wastewater-based bio-refineries.

The SMART-Plant consortium

Participant No	Participant organisation name	Acronym	Туре	Country
1 (Coordinator)	Università degli Studi di Verona	UNIVR	RES	Italy
2	Università di Roma La Sapienza	UR	RES	Italy
3	Brunel University	UBRUN	RES	UK
4	Cranfield University	CU	RES	UK
5	Universitat Autònoma de Barcelona	UAB	RES	Spain
6	Universitat de Vic	UVIC-UCC	RES	Spain
7	National Technical University of Athens	NTUA	RES	Greece
8	Berlin Centre of Competence for Water	KWB	RES	Germany
9	Biotrend S.A.	BIOTR	SME/TP/SP	Portugal
10	Socamex S.A.	SOC	LI/TP/ENDU	Spain
11	BYK Additives Ltd	BYK	SME/TP	Germany
12	SCAE srl	SCAE	SME/TP	Italy
13	AGROBICS Ltd	AGRB	SME/TP	Israel
14	Salsnes Filter A.S.	SALSNES	LI/TP	Norway
15	Instituto de Biologia Experimental e Tecnológica	IBET	RES/SP	Portugal
16	Athens Water Supply and Sewerage Company	EYDAP	SME/ENDU	Greece
17	Alto Trevigiano Servizi S.r.1.	ATS	SME/ENDU	Italy
18	Mekorot Water Company Ltd	MEKOROT	LI/ENDU	Israel
19	Aiguas de Manresa S.A.	AdM	SME/ENDU	Spain
20	BWA B.V.	BWA	SME/TP	Netherlands
21	Execon-Partners Gmbh	EXC	SME/SP	Switzerland
22	SEVERN TRENT WATER Ltd	STW	SME/ENDU	UK
23	JV Aktor SA and Athina SA	AKTOR	SME/TP	Greece
24	Vannplastics Ltd. (Ecodek)	ECODEK	SME/TP	UK
25	Wellness Smart Cities SLU	WSC	SME/TP/SP	Spain

RES=Research Organization; SME=Small/Medium Enterprise; LI=Large Industry; TP=Technology Provider; SP=Service Provider; ENDU=End User

Supported by the Horizon 2020 Framework Programme of the European Union

The SMART-Plant Consortium

SMAR I-Plant open the pathway to deliver circular economy

SMART-Plant workplan structure

WP1 Coordination	WP7 Ethics		
WP2 Mainstream Technologies	WP4 Technological assessment,	WP5	
WP3 Side- and Downstream Technologies	Selection and Integration	Market Exploitation	SMART-Plant
WP6 Dissemination and Communication	WP7 Ethics		

The SMARTechnologies

SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

Supported by the Horizon 202 Framework Programme of the European Union

the green technologies expo

SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

Realization of a full-scale plant

ü all process steps combined in one process

Optimization:

- ü Efficiencies of different process steps
- ü Energy-/chemical consumption individual process steps
- ü Quality cellulose fiber after different process steps
- ü Optimization interdependence

Market development

- ü Marketing and valorization of recovered cellulose
 - ü Reuse in asphalt
 - ü Raw material for composite (Brunel)
 - ü Insulation materials (In development, not sure yet)

First pilot testing

SMARTech2a: Secondary mainstream biogas recovery by polyfoam biofilter

§ B1 Technical Part

- 1. An innovative anaerobic immobilized polymeric biofilter.
- Reaction volume -25 m³ will be designed and installed in the WWTP of Karmiel (North of Israel)
- 3. Characteristics:
- 100-120 m³/d.
- Removal of 30-40% of CODf
- Additional of 25% biogas
- Reduction of 25-30% energy consumption.
- 4. Operation optimization, monitoring and validation:
- biogas yield
- biomass activity
- treated effluent quality

the green technologies expo

SMARTech2b: Secondary mainstream SCEPPHAR

SMARTech3: Tertiary nutrient recovery by mesolite and nano ion exchange

SMARTech4a/b Sidestream

Supported by the Horizon 2020 Framework Programme of the European Union

the green technologies expo

Main features of S.C.E.N.A.

- Costs for nitrogen removal 1.1-1.6 €/kgN
- Biological rates 10-12 times higher than conventional activated sludge processes
- Enhanced Biological Phosphorus Recovery associated to the biological sludge
- Applicable on strong nitrogenous fluxes (e.g. anaerobic digestate, landfill leachate, livewaste slurries and agro-waste, etc)

Micropial Community Engineering (MCE) for bioplastic production from

Explore natural microbial comaster belective pressure

Products and energy

Select dominant work horse

Courtesy: R. Kleerebezem - Water 2020 network

SMARTech5 Sidestream SCEPPHAR

Downstream SMARTechA Post-processing of recovered cellulose and PHA for bio-composites production

- § Downstream SMARTechA: Incorporation of the recovered cellulosic and PHA-rich materials as raw materials for the production of new type of sludge plastic composite (SPC);
- § Processing of SPC is to be based on the modified extrusion process used for processing classical WPC:
 Die Zone TEMP 9C Barrel Zones

Downstream SMARTechB Post-processing of cellulosic and P-rich sludge

Dynamic Composting 🕅 Obtain a compost rich in nutrients from P-rich slduge

Electric Signal Exhaust gases Gas Flow Vapor Temperature O_2 gas Condensing probe analyser device Data Acquisition PC <-System and Controller Inlet air from compressor to the system Inlet AirFlow Flow Meter 100 -250 L_{reactor}

Fig. 1. Experimental set up of the composting pilot reactor.

- 1) Mixture of bulking agent + P-rich sludge (SCENA)
- 2) Mixture of bulking agent + Mesolite recovered compounds
 - + Prich sludge
- 3) Mixture of mesolite recovered compounds + P-rich sludge
 + conventional WWTP sludge

Biodrying 🕅 Obtain a biofuel from cellulosic sludge

Bio-drying is a compost-like process, however, the eventual goal of this concept is to use the metabolic heat to remove water from the cellulosic sludge at the lowest possible residence time and minimal carbon biodegradation hence preserving most of the gross calorific value of the waste matrix

SMARTechB Post-processing of cellulosic and P-rich sludge

Evaluation of P fertilizing effects of P-rich sludge and struvite

Plant species: monocots (maize) and dicots (grapevine)

SMART-Plant Business plan and market deployment strategy

the green technologies expo

SMART-Plant

of the European Union

The business model is developed profiling key target groups:

- Water utilities: grouped into basic, intermediate and advanced clusters
- Chemical and downstream processing industries: related to the four main strategic pillars: Construction, additive, Agrics and Intermediates

Public/private water utility management perspectives to deliver circular economy with the chemical industries

SMART-product portfolio dvt. for the recovered resources

use

SMART- Product portfolio with key product offer by strategic pillar to guide exploitation

SMART-Plant exploitation matrix and heat map

Recovered resources portfolio

Only municipal wastewater? The WWTP can be the urban biorefinery!

SMART-Plant

ECOMONDO the green technologies expo

wastewater and organic waste treatment

First reported in 1988, a pioneering study of co-digestion by Cecchi et al. at Treviso WWTP

Mata-Alvarez J, Dosta J, Macé S, Astals S (2011), Crit. Rev. Biotechnol. 31:99-111

TECHNOLOGIE S

BIOWASTE PREPARATION AND

1) Source Separate Collection

2) Under Sink Food Waste disposer

THE TREVISO FULL SCALE WWTP

AF-BNR-SCP: process scheme

TECHNOLOGIE Biowaste pre-treatments: Case Studies

Treviso (Italy)

S

Supported by the Horizon 2020 Framework Programme of the European Union

the green technologies expo

The Struvite Cristallization Plant at the Treviso WWTP

The Struvite N-P low release fertilizer

Struvite Crystallization Plant

Framework Programme of the European Union

SMART-Plant

the green technologies expo

TECHNOLOGIE Biowaste pre-treatments: Case Studies

Rovereto (TN, Italy)

market? The SMART-Plant Joint

From Chemicals from Natural Resources to Urban Mining

- SP JV vision is to disrupt the linear model of chemical sourcing, moving to circular economy with full valorization of chemicals, by Urban Mining through watertreatment technologies and chemical recovered resources
- Chemical sourcing
- Chemicals to be fully
 disregardless their origin

Chemicals Market to be a fully closed loop value

valorized,

the green technologies expo

Urban

Mining

SMART-Plant Joint Venture

Mission Statement

To enable full transition to Urban Mining

Through:

- Delivering to wastewater treatment plants custom solutions for resources recovery
- Supporting in full valorization of chemicals for relevant end use

the green technologies expo

SMART-Plant JV will support in

Identify

- Key resources to recover
- Technology upgrade reqquired

2

Exploitation of Chemicals (getting full value of Urban Mining)

Target is to use full value from Urban Mining

Realization

- Market introduction of Chemicals
- Derive full value of Urban Mining
- Close the loop of circular economy in wastewater treatment plants

Implementation

- Upgrade and resource recovery
- Chemicals application dvt. to match unmet market need

Concept

- Technology upgrade roadmap
- Recovered resources plan / to match local demand

SMART-Plant Exploitation Manager: InnoEXC fabiana.fantinel@innoexc-hub.com;

di **VERONA**

Supported barbara, lang@innoexc-hub. Framework Programme of the European Union

I hank you for your attention and... see you in ECOMONDO

20th edition From 8th to 11th of November 2016 Italy - Rimini Expo Centre -169 DAYS

FOCUS CONFERENCES Q INFO CATALOGUE EXHIBITORS VISITORS MEDIA ROOM

> Waste Management and Exploitation

the green technologies expo

ECOMONDO

- > Wastewater & Biowaste management and exploitation - Section Biowaste
- > Wastewater & Biowaste management and exploitation - Section Global Water Expo
- > Biobased Industry and Bioeconomy
- > Site Remediation and Regualification
- > Alternative & Critical Raw Materials
- > Efficient Circular Industry
- > Urban Circular Economy -Section Smart Communities
- > Urban Circular Economy -

	orogram		SHAR
08/11/2016	09/11/2016	10/11/2016 11/11/2016	
PROGRAM GLOE	BAL WATER EXPO	(BACK TO INDEX) - WEDNESDAY 09 NOVEMBER	
10:00 a.m01	1:00 p.m. <i>Place:</i> Gl	obal Water Expo Room	
GLOBAL WAT Water manage perspective fo	ER EXPO - Confere ement within the c or the water utilitie	ence ircular economy. Resource recovery from the water cycle: market, value chains and nev s and chemical industry	W
GLOBAL WAT Water manage perspective for 02:00 p.m05	ER EXPO - Confere ement within the c or the water utilitie 5:00 p.m. <i>Place</i> : Gl	ence ircular economy. Resource recovery from the water cycle: market, value chains and new s and chemical industry obal Water Expo Room	w
GLOBAL WAT Water manag perspective for 02:00 p.m05 GLOBAL WAT	ER EXPO - Confere ement within the c or the water utilitie 5:00 p.m. <i>Place:</i> GI ER EXPO - Confere	ence ircular economy. Resource recovery from the water cycle: market, value chains and new s and chemical industry obal Water Expo Room	W

www.ecomondo.com

