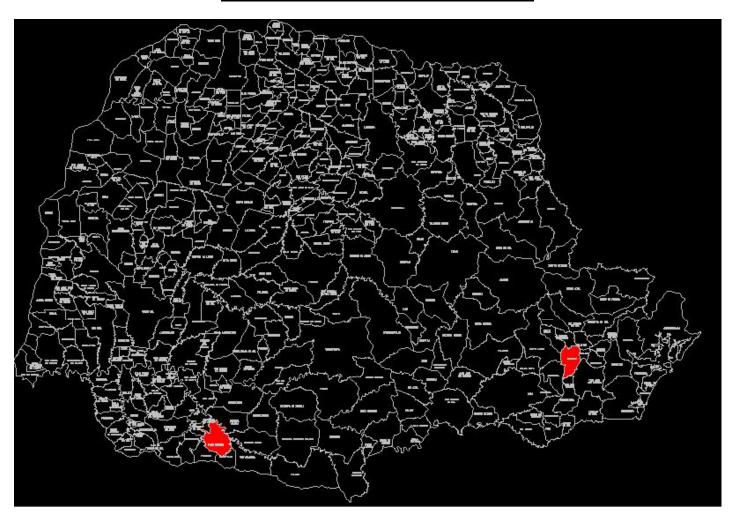


# AMPLIAÇÃO DA CAPACIDADE REAL DE PRODUÇÃO DO SISTEMA DE ABASTECIMENTO DE ÁGUA DE PATO BRANCO – PR.


Marcelo D. Depexe, Msc. Eng.

Marcos A. Favaro, Eng.

Romulo R. Gasparini, Msc. Eng. (Apresentação)



#### PATO BRANCO - PR.



- Pato Branco, localizado na Região Sudoeste do Estado do Paraná, está a 437 km de Curitiba.



#### PATO BRANCO - PR.





#### Segundo Censo 2.010 – IBGE

- População Urbana: 68.093 hab;

- População Rural: 4.280 hab;

- População Total: 72.373 hab.



# SERVIÇOS DE ABASTECIMENTO COM ÁGUA TRATADA E ESGOTAMENTO SANITÁRIO

- No município de Pato Branco PR., os serviços de abastecimento com água tratada e com esgotamento sanitário é realizado pela Companhia de Saneamento do Paraná Sanepar.
- Índice de Atendimento com Água Tratada do Sistema: 100 % (ref.: jun/2.011).
- Índice de Atendimento com Esgotamento Sanitário do Sistema: 82 % (ref.: jun/2.011).
- A operação, a manutenção, a comercialização e o planejamento do SAA/SES Pato Branco é de responsabilidade da URPB Unidade Regional de Pato Branco.

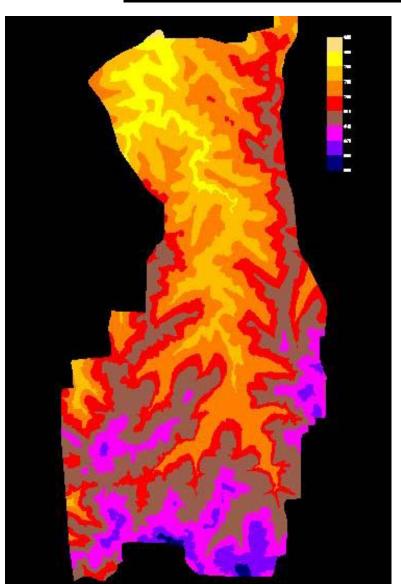


- Extensão da rede de distribuição: 440 mil metros de RDA (ref.: jun/2.011);
- Quantidade de Zonas de Pressão: 46 ZP's (07 Marcha, 01 Recalque, 03 Gravidade, 14 Booster e 21 Válvula);
- Quantidade de Distritos de Medição e Controle: 27 áreas;
- Quantidade de Setores de Manobra: 335 SM's.



- Reservatórios: 14 unidades (08 semi-enterrados, 02 apoiados e 04 elevados);
- Volume de reservação atual: 6.300 m³;
- O volume de reservação atual está acima em 2.000 m³ do 1/3 do CMD do sistema.




- Índice de perdas no sistema distribuidor atual: 106,74 l/lig.dia ou 17,95% do Volume Produzido (ref.: jun/2.011);
- Perda real tolerável do sistema distribuidor (com base na extensão de redes, número de ligações totais e pressão média de operação): 50,13 l/lig.dia;
- Perda aparente tolerável do sistema distribuidor (com base no Parque de Hidrômetros e curva de rendimento dos hidrômetros): 82,55 l/lig.dia;
- Índice de perdas tolerável no sistema distribuidor: 132,68 l/lig.dia portanto o índice de perdas no sistema distribuidor atual está em conformidade.

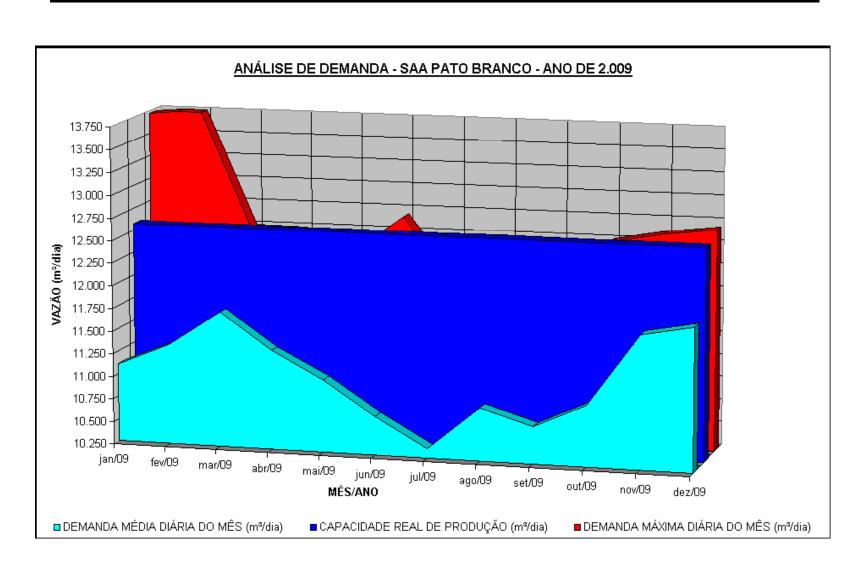


- Consumo específico de Energia Elétrica do SAA Pato Branco: 1,25 kWh/m³ de água tratada;
- Consumo específico de Energia Elétrica médio dos SAA's da Sabesp: 0,60 kWh/m³ de água tratada (Tsutiya, M. T. *Redução do Custo de Energia Elétrica em Sistemas de Abastecimento de Água*. 2.006);
- Portanto, o consumo específico de Energia Elétrica é elevado, devido ao relevo da Zona Urbana.



#### RELEVO DA ZONA URBANA DE PATO BRANCO




-Área da Zona Urbana: aprox. 35 km²;

- Diferença de nível: aprox. 240 metros.



- Anteriormente a melhoria realizada no sistema, Capacidade Real de Produção do SAA Pato Branco era de 12.576 m³/dia (524 m³/h);
- Nos meses de verão do ano de 2.009, as Demandas Máximas Diárias foram superiores a Capacidade Real de Produção, em pelos menos, 1.140 m³/dia, o que foi compensado pelo excendente de reservação do sistema.







- No verão do ano de 2.010, em função de dias seguidos de alta demanda, o que impossibilitou a compensação pelos reservatórios do sistema, houveram a necessidade de realização de rodízio no abastecimento em dois momentos distintos, o que gerou a insatisfação dos clientes de toda a cidade e região.

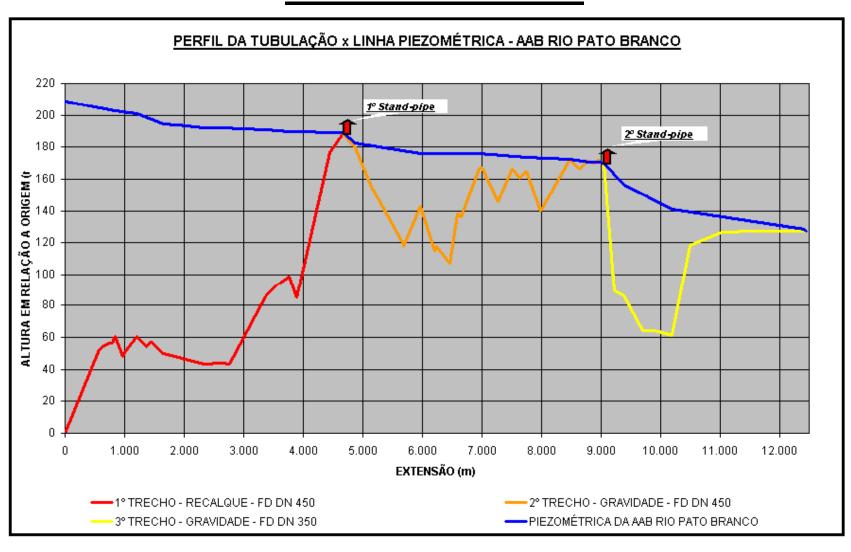




- Este fato foi notícia nos principais veículos de comunicação da região e do Estado do Paraná.



- Levantamento de campo para cadastro da Adutora de Água Bruta (AAB);
- Localização de todos os dispositivos operacionais da AAB (stand-pipes, ventosas, descargas e estações pitométricas);
- Realização de 30 sondagens, ao longo do caminhamento da AAB, para a confirmação de sua profundidade e de seu diâmetro;
- Levantamento topográfico georreferenciado de todos estes pontos;
- Estes levantamentos foram necessários por não haver um cadastro confiável da AAB.




Após este trabalho de cadastramento da AAB, foi realizado um monitoramento de pressão e de vazão desta Unidade Operacional conforme a seguir:

- Instalação de loggers de junto as ventosas (monitoramento de pressão);
- Monitoramento de nível de água: Câmara de Sucção do Alto Recalque da Captação, 02 Standpipes existentes na AAB e câmara de início do Processo de Tratamento (ETA);
- Nos 03 trechos distintos da AAB, foram realizados trabalhos de pitometria, para uma mesma condição de vazão;
- Todo este trabalho de levantamento de dados foi realizado para as 03 combinações possíveis dos conjuntos elevatórios do Alto Recalque da Captação;
- Paralelamente a este trabalho, foram monitorados os parâmetros elétricos dos conjuntos elevatórios da Captação.



# PERFIL DA TUBULAÇÃO x LINHA PIEZOMÉTRICA DA AAB RIO PATO BRANCO





# MONITORAMENTO DE PRESSÃO x VAZÃO DA AAB RIO PATO BRANCO

| TRABALHO DE MONITORAMENTO REALIZADO NA AAB RIO PATO BRANCO |                                         |                           |                                            |                                          |                                       |                                             |                     |                  |                                                    |                                        |                                 |
|------------------------------------------------------------|-----------------------------------------|---------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------------|---------------------|------------------|----------------------------------------------------|----------------------------------------|---------------------------------|
| IDENTIFICA<br>ÇÃO DO<br>TRECHO DA<br>AAB                   | IDENTIFICAÇÃO DO PONTO DE MONITORAMENTO |                           |                                            |                                          | DETERMINAÇÃO DOS DADOS NECESSÁRIOS    |                                             |                     |                  |                                                    |                                        |                                 |
|                                                            | DISPOSITIV<br>O<br>OPERACION<br>AL      | COTA NO<br>PONTO<br>(mca) | DISTÂNCIA<br>EM<br>RELAÇÃO A<br>ORIGEM (m) | DIÅMETRO<br>NOMINAL<br>DO TRECHO<br>(mm) | PRESSÃO<br>MÉDIA NO<br>PONTO<br>(mca) | PIEZOMÉTRI<br>CA MÉDIA<br>NO PONTO<br>(mca) | VAZÃO MEDIDA (m³/h) |                  | CÁLCULO<br>DO<br>COEFICIENT<br>E *C* DO<br>TRECHO, | CÁLCULO DO COEFICIENT E *C* DO TRECHO, | CÁLCULO<br>DA PERDA<br>DE CARGA |
|                                                            |                                         |                           |                                            |                                          |                                       |                                             | Pitometria          | Macromedid<br>or | CONSIDERA<br>NDO A                                 | CONSIDERA<br>NDO O<br>MACROMED<br>IDOR | UNITÁRIA<br>DO TRECHO<br>(m/km) |
| TRECHO 01                                                  | Câmara de<br>sucção do Alto<br>Recalque | 688                       | 0                                          | 450                                      | 0                                     | 688                                         |                     | 518              | 99                                                 | 97                                     | 3,05                            |
|                                                            | EEB 02 – Alto<br>Recalque               | 687                       | 0                                          |                                          | 209                                   | 895                                         | -                   |                  |                                                    |                                        |                                 |
|                                                            | Ventosa n <b>º</b> 10                   | 773                       | 3.361                                      |                                          | 112                                   | 885                                         | -                   |                  | 64                                                 | 62                                     | 6,87                            |
|                                                            | TAP nº 02                               | 865                       | 4.460                                      |                                          | 12                                    | 877                                         | 528                 |                  |                                                    |                                        | ·                               |
|                                                            | Stand-pipe 01                           | 876                       | 4.676                                      |                                          | 1                                     | 877                                         | -                   |                  | 82                                                 | 80                                     | 4,30                            |
| TNEC  10 02                                                | TAP nº 03                               | 806                       | 5.685                                      |                                          | 60                                    | 866                                         | 511                 |                  | 50                                                 | 50                                     | 10,18                           |
|                                                            | Ventosa n <b>°</b> 15                   | 831                       | 5.966                                      |                                          | 34                                    | 865                                         |                     |                  | 05                                                 | 00                                     | 6,19                            |
|                                                            |                                         |                           |                                            |                                          |                                       |                                             |                     |                  | 111                                                | 112                                    | 2,33                            |
| TRECHO 03                                                  | Stand-pipe 02                           | 857                       | 9.057                                      | 350                                      | 1                                     | 857                                         | -                   |                  | 61                                                 | 60                                     | 25,03                           |
|                                                            | Ventosa nº 24                           | 782                       | 10.201                                     |                                          | 47                                    | 829                                         |                     |                  | 130                                                | 129                                    | 6,14                            |
|                                                            | TAP nº 06                               | 811                       | 12.418                                     |                                          | 7                                     | 818                                         | 525                 |                  |                                                    |                                        |                                 |
|                                                            | Chegada a ETA                           | 815                       | 12.458                                     |                                          | 0                                     | 815                                         | •                   |                  |                                                    |                                        |                                 |





- Com o levantamento de ampo, ficou evidente que havia admissão de ar através dos Stand-pipes. Em função disso, a URPB executou uma tubulação, a jusante dos stand-pipes, para realizar a purga deste ar.



Com os dados obtidos no levantamento de campo, foi realizado um estudo de Transiente Hidráulico da AAB. Este estudo comprovou a possibilidade de se ampliar a Capacidade de Transporte da AAB de 524 m³/h para 756 m³/h. Para este incremento, foi apontado as seguintes necessidades:

- Substituição de 23 ventosas de simples função existentes por ventosas de alto desempenho;
- Implantação de 12 novas ventosas (03 no 1º trecho, 03 no 2º trecho e 06 no 1º trecho);
- Surgiu um novo problema: implantar as 12 novas ventosas sem a paralisação da AAB!!!



- Para a implantação das 12 novas ventosas, foi desenvolvido um sistema de furação que consistia em uma furadeira industrial elétrica adptada a uma conexão flangeada, para ser acoplada junto a registro, com uma serra copo na ponta.

- Este sistema poderia ser utilizada para furação nas bitolas DN 50, DN 75 e DN 100.

- Para a montagem destas ventosas junto a tubulação, foi desenvolvido uma abraçadeira especial bi-partida com derivação flangeada.



# IMPLANTAÇÃO DAS NOVAS VENTOSAS COM A TUBULAÇÃO EM CARGA





Após avaliação da AAB, era necessário propor melhorias para a Captação e a ETA.

- Na Captação Rio Pato Branco, o bombeamento de água é em 02 etapas: Baixo Recalque e Alto Recalque;
- Não há macromedição na Captação, o que impossibilitava conhecer o Real Ponto de Operação dos Conjuntos Elevatórios do Baixo Recalque;
- Sabia-se apenas que os conjuntos do Baixo Recalque tinha uma capacidade superior aos conjuntos do Alto Recalque, devido a necessidade de utilização de inversor na Unidade de Montante.

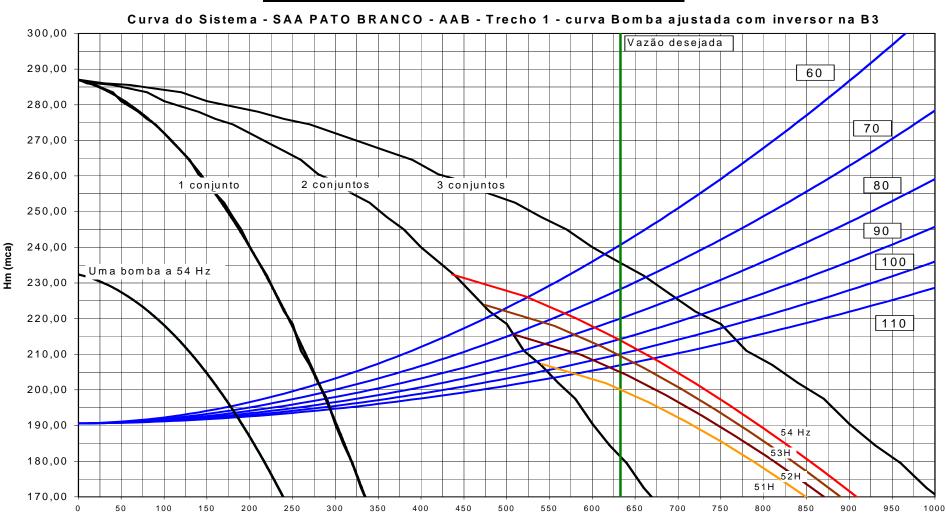


- Para se conhecer o Ponto de Operação do Baixo Recalque, foi realizado um Balanço de Massa na Câmara de Sucção do Alto Recalque sem a atuação do Inversor de Frequência;

- Técnicas utilizadas: bombona e cronômetro e medição do jato de água (método das coordenadas);

- Concluiu-se que a vazão dos conjuntos do Baixo Recalque era superior em, pelo menos, 128 m³/h.

$$\overline{v} = \frac{x}{2} \cdot \sqrt{\frac{1}{H \cdot y}}$$


Método das coordenadas para determinação de vazão em extremidades abertas (Porto, R. M. *Hidráulica Básica*. 1.999).



- Para a ampliação da vazão do Alto Recalque, foi estudado a operacionalização do 3º conjunto;
- Com 02 conjuntos, a Vazão de Operação do Alto Recalque é de 524 m³/h;
- Com 03 conjuntos, a Vazão de Operação do Alto Recalque seria de 756 m³/h (vazão estudada na avaliação da AAB, porém superior a Vazão de Operação do Baixo Recalque);
- Portanto optou-se pela instalação de um inversor de frequência neste 3° conjunto do Alto Recalque.



# OPERACIONALIZAÇÃO DO 3º CONJUNTO DO ALTO RECALQUE DA CAPTAÇÃO



Vazão (m³/h)



Ainda era necessário uma avaliação da ETA.

- Conforme avaliação da ETA, as operações unitárias que estavam limitando a Capacidade de Tratamento era a floculação e a decantação;
- Para isso, foi associado em paralelo a ETA, 02 floco-decantadores, com capacidade nominal de 15 l/s.cada;
- Estes floco-decantadores estavam disponíveis na Região Metropolitana de Curitiba;
- A tomada de água para estes floco-decantadores ocorre no canal de entrada do processo de coagulação (jusante da chicana de homogeneação), através de um conjunto submersível;
- O retorno da água floculada e decantada, ao Processo de Tratamento, ocorre por gravidade no canal de entrada dos filtros.



## AMPLIAÇÃO DA FLOCULAÇÃO E DA DECANTAÇÃO DA ETA RIO PATO BRANCO



Com estas medidas, foi possível ampliar a Capacidade Real de Produção do SAA Pato Branco para 15.120 m³/dia (630 m³/h) – incremento de 20,61 %.



#### **RESULTADO**

- Com estas melhorias, é possível atender a demanda do SAA Pato Branco até o ano de 2.014;
- O Alto Recalque e a AAB estão preparados para operar a uma vazão de 756 m³/h, o que garante o atendimento da demanda do SAA Pato Branco até o ano de 2.021;
- Para se operar o Sistema Produtor em 756 m³/h, ainda é necessário a substitução dos conjuntos elevatórios do Baixo Recalque e a realização de melhorias nos floculadores e nos decantadores da ETA;
- O Consumo Específico da Captação Rio Pato Branco, anterior a melhoria, era de 0,86 kWh/m³ de água recalcada. Após a melhoria, a este Consumo Específico ficou em 0,85 kWh/m³ de água recalcada;
- Está em fase de elaboração o Projeto de Engenharia para a Ampliação Global do Sistema de Abastecimento de Água de Pato Branco.



#### **CONTATO**

- Romulo Ruiz Gasparini
- Companhia de Saneamento do Paraná
- Unidade Regional de Pato Branco
- Telefone: (46) 3902-1838
- E-mail: <a href="mailto:romulorg@sanepar.com.br">romulorg@sanepar.com.br</a>

**MUITO OBRIGADO!!!**