USINAS HIDRELÉTRICAS SEM BARRAGENS, O COMPROMETIMENTO DA GERAÇÃO DE ENERGIA ELÉTRICA, NO SECULO XXI

Pedro José da Silva⁽¹⁾

Professor Associado da Escola de Engenharia do Instituto Mauá de Tecnologia /*IMT* Engenheiro Civil – Universidade Santa Cecília dos Bandeirantes/*UNISANTA* Mestre em Saneamento Ambiental – Universidade Presbiteriana Mackenzie/*UPM* Doutor em Engenharia Civil – Escola Politécnica da Universidade de São Paulo/*EPUSP* Pós-doutorado – Instituto de Pesquisas Energéticas e Nucleares/*IPEN*

Endereço⁽¹⁾: Rua Conde de Assumar, 191 – Bairro Vila Nivi/Tucuruvi – Cidade São Paulo Estado São Paulo - CEP: 02255-020 – País Brasil - Tel: +55 (11) 2931-9276 - Fax: +55 (11) 2931-9276 e-mail: **p-jose-silva@uol.com.br**

RESUMO

Brasil, sexta potência econômica do planeta, manter e avançar esse desenvolvimento econômico exige enorme quantidade de energia elétrica. O objetivo desse trabalho é questionar o novo enfoque dado à construção de usinas hidrelétricas com pequenos reservatórios, ou seja, com pequena reserva de energia elétrica. A metodologia para o desenvolvimento da pesquisa fundamenta-se em um estudo descritivo/correlacional, pois consiste da observação e registro de eventos nas obras de construção de usinas hidrelétricas. Apresenta-se como resultado a identificação da necessidade de se desenvolver projetos que contemplem simultaneamente os grandes reservatórios e o atendimento às seguintes sustentabilidades: técnica, econômica, financeira, política, social, jurídica e ambiental, considerando-se que a principal matriz de energia elétrica é função da quantidade de água armazenada, nos reservatórios das usinas hidrelétricas.

PALAVRAS-CHAVE: Hidrelétricas, Reservatórios, Energia Elétrica, Matriz Energética, Hidroeletricidade.

INTRODUÇÃO

De acordo com Müller (1995) uma barragem é uma construção destinada a barrar um curso d'água e proporcionar a formação de um reservatório, criando com isso um desnível entre montante e jusante, para o acionamento de turbinas hidráulicas.

Segundo Cruz (1996) as décadas de 60 e 70 permitiram registar um aumento equitativo de barragens/obras hidrelétricas, permitindo ao Brasil o seu desenvolvimento em diferentes setores.

A construção de uma barragem ligada a uma usina hidrelétrica nos permite entender melhor esse desenvolvimento, pois ela poderá assumir três finalidades, a saber: a concentração do desnível de um rio para produzir uma queda, a criação de um grande reservatório capaz regularizar o deflúvio, e simplesmente o levantamento do nível d'água para possibilitar a entrada num canal, num túnel ou numa tubulação que a aduza para a casa de força.

Uma barragem pode ser construída para atender a mais de uma finalidade, simultaneamente, ou seja, pode apresentar usos múltiplos, isto é, atender diversos fins, como por exemplo: a navegação, o controle de cheias, a irrigação, etc.

Na construção de uma barragem em geral duas situações se fazem bem distintas, a primeira corresponde ao cenário que junto a uma barragem construída para criar condições de calado para a navegação, muitas vezes, constrói-se uma usina hidrelétrica para se aproveitar queda criada pela barragem, a segunda indica a ocorrência do cenário contrário, isto é, ao lado de uma barragem erguida para um aproveitamento hidrelétrico pode ser construída uma eclusa para navegação (SCHREIBER, 1978).

A década de 80 assistiu a redução dos investimentos em usinas hidrelétricas, e os reflexos devastadores dessa medida, se fazem repercutir nos dias atuais sobre a forma da *crise energética* e consequentemente no abalo pelas raízes de uma das dez primeiras economias mundiais.

JUSTIFICATIVA

As barragens durante muito tempo foram utilizadas para irrigação, para controlar o rio, para pescar e para a dessedentação dos humanos e dos animais. Diante da necessidade de energia e progresso, a humanidade descobriu há quase dois séculos, a possibilidade de gerar energia elétrica através da construção de barramentos que começaram a surgir em beira de despenhadeiros, ao lado de cachoeiras, corredeiras e cânions. Muitos rios acabaram se transformando numa sucessão de lagos.

O aproveitamento dos cursos d'água deu certo, e atualmente o Brasil conta com um dos maiores parques hidrelétrico de todo o mundo, dispondo de um potencial hidrelétrico de 150 milhões de quilowatts. Segundo Schreiber (1978) nas regiões centro-sul e sul, com base em estudos energéticos, verificou-se o potencial de 80 milhões de quilowatts e avaliaram-se outros 70 milhões de quilowatts. Segundo Tundisi (2003) o Brasil é responsável por 10% da produção hidrelétrica mundial, utilizando somente 35% de seu potencial hidrelétrico.

De acordo com Miranda (2004) a potência total instalada no país é da ordem de 65.000 MW, o que representa 79% de toda energia elétrica produzida no Brasil, e ainda existe um grande potencial hidrelétrico não explorado na Amazônia, principalmente no Rio Xingu.

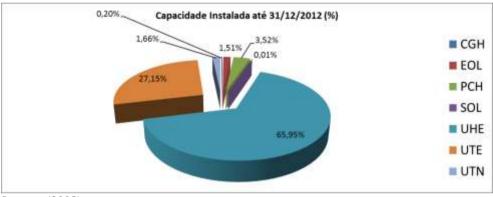
As usinas hidrelétricas permitem o levantamento do nível d'água, possibilitando a entrada d'água num canal, num túnel ou numa tubulação que a aduza à casa de forças (SCHREIBER, 1978), de modo a permitir o uso da energia hidrelétrica, indispensável à vida social e econômica do Brasil. Os primeiros estudos apresentados, não permitiram identificar em situações especificas as necessidades de manutenção, conservação e preservação das bacias hidrográficas na qual se construí os barramentos, que deram origem aos reservatórios e as usinas hidrelétricas. Entendida atualmente como um empreendimento de extrema relevância econômica, as usinas hidrelétricas têm merecido especial atenção do mundo científico acadêmico, pois a ocorrência do assoreamento dos reservatórios além de dar origem a alguns impactos ambientais, também compromete significativamente a vida útil desse empreendimento.

A ausência dessas necessidades permitiu o assoreamento de muitos reservatórios de usinas hidrelétricas, sobretudo nas regiões sudeste, nordeste e centro-oeste, resultado de uma erosão, que segundo Miranda (2004) é filha bastarda do desmatamento e do uso irracional das terras, baixando os "tirantes" dos reservatórios a níveis alarmantes.

Ao se dar início ao um estudo de viabilidade de um empreendimento, tem-se que levar em conta diversos fatores, dentre eles, os ligados ao meio ambiente.

HIDROELETRICIDADE. UMA NECESSIDADE SOCIAL E ECONÔMICA

À medida que melhora a qualidade de vida das pessoas, aumenta o consumo de água, pois se tem hábitos de higiene mais intensos, maior número de eletrodomésticos (máquinas de lavar roupa, pratos, etc.) e, consequentemente o aumento do consumo de energia elétrica.


Esse aumento no consumo de água e de energia elétrica justifica o crescente aumento do número de usinas hidrelétricas no Brasil.

No quesito eletricidade, de acordo com Hinrichs e Kleinbach (2003), o Brasil possui um potencial de geração semelhante à posição de países como a Arábia Saudita e o Iraque, em relação ao petróleo, porém com a vantagem de mais de 90% da capacidade de geração de energia ser baseada em dois elementos gratuitos, isto é a água e a força da gravidade.

A tabela 1 permite identificar em síntese a capacidade brasileira de geração de energia por tipo de unidade geradora.

Tabela 1 – Tipos de unidade geradora X Capacidade instalada até 31/12/2012

Tipo	Quantidade	Potência (kW)	%
Central Geradora	407	239.855	0,20
Hidroelétrica (CGH)			
Central Geradora	84	1.886.382	1,51
Eolielétrica (EOL)			
Pequena Central	452	4.301.753	3,52
Hidroelétrica (PCH)			
Central Geradora Solar	11	7.578	0,01
Fotovoltaica (SOL)			
Usina Hidrelétrica de	205	79.752.660	65,96
Energia (UHE)			
Usina Termelétrica de	1.648	32.909.108	27,15
Energia (UTE)			
Usina Termonuclear	2	2.007.00	1,66
(UTN)			
Total	2.809	121.104.336,00	100,00

Fonte: Marcato (2008)

O Brasil possui um total de 2.766 empreendimentos em operação, ver tabela 2, gerando 122.315.039 kW de potência. Está previsto para os próximos anos uma adição de 42.989.002 kW na capacidade de geração do país, proveniente dos 164 empreendimentos atualmente em construção e mais 543 outorgadas.

Tabela 2 – Empreendimentos em Operação e Construção

					Em Construção		
Tipo	Quantidade	Potência Outorgada (kW)	Potência Fiscalizada (kW)	%	Quantidade	Potência Outorgada (kW)	%
Central Geradora Hidroelétrica (CGH)	401	239.707	238.077	0,19	1	848	0
Central Geradora Eolielétrica (EOL)	86	1.888.534	1.888.538	1,54	79	1.950.296	7,76
Pequena Central Hidroelétrica (PCH)	436	4.305.297	4.258.968	3,48	47	552.459	2,20
Central Geradora Solar							
Fotovoltaica (SOL)	11	11.578	7.578	0,01	-	-	-
Usina Hidrelétrica de Energia (UHE)	204	82.486.844	79.910.808	65,33	11	18.370.400	73,13
Usina Termelétrica de Energia (UTE)	1.626	35.895.090	34.004.070	27,8	25	2.896.690	11,53
Usina Termonuclear (UTN)	2	1.990.000	2.007.000	1,64	1	1.350.000	5,37
Total	2.766	126.817.050	122.315.039	100,00	164	25.120.693	100,00

Fonte: Marcato (2008)

O Brasil, dentro do planeta, segundo Sperling (1999), teve a sua primeira usina hidrelétrica em operação no ano de 1883, construída no município de Diamantina, Minas Gerais, e denominada de Ribeirão do Inferno. Em 1889, ano da Proclamação da República, entrou em funcionamento a primeira usina hidrelétrica brasileira, pertencente ao serviço público, implantada no Rio Paraibuna, município de Juiz de Fora, Minas Gerais, recebendo a denominação de Marmelos. Ainda na época do império foi iniciada na região nordeste a construção de diversas barragens, denominadas especificamente de Açudes, com o objetivo primordial de armazenamento de água para combate a seca.

Segundo Müller (1995), a história das grandes barragens brasileiras é relativamente recente, podendo ser dividida nos seguintes períodos:

- Até 1950, só havia no Brasil 67 barragens, das quais 31 atendiam à regularização de vazão e abastecimento de água do nordeste, 26 para geração de energia e 10 para outras finalidades;
- A década de 1950 registrou um aumento equitativo do número de empreendimentos entre o setor elétrico e os demais, com 21 barragens para fins energéticos e de 22 para usos do Departamento Nacional de Obras Contra Secas DNOCS;
- Entre 1960 e 1980, mais 66 barragens hidrelétricas foram levantadas, enquanto que para outros usos se registravam 101 empreendimentos. A partir de 1963, com a construção da Usina de Furnas, as barragens brasileiras ultrapassaram a marca dos 100 m de altura, da fundação à crista. Poucas outras represas possuem alturas superiores a 100m;
- Em 1990, do total de 343 aproveitamentos hidráulicos cadastrados pelo Comitê Brasileiro das Grandes Obras CBGB, 124 destinavam-se à geração hidrelétrica, 04 à navegação, 72 ao abastecimento de água, 37 à irrigação, 02 à piscicultura, 76 à regularização, 12 ao controle de cheias e mais barragens destinadas aos usos diversos como a proteção ambiental;
- Atualmente a região hidrográfica do Paraná é a maior geradora de energia hidrelétrica do país, correspondendo a 59,3% da produção nacional. São 176 usinas, com destaque para Itaipu.

A década de 1990 é o marco na redução dos investimentos para a construção de enormes usinas hidrelétricas; aliados à preocupação ambiental decorrente do alagamento de grandes áreas, existem ainda projetos de implantação de várias usinas de grande porte, notadamente nas regiões Norte e Centro-Oeste, segundo Sperling (1999). Apesar disso, não é mais possível construir grandes hidrelétricas, apenas pequenas centrais hidrelétricas, incentivadas por linha de crédito do governo federal. Os agentes financeiros internacionais aumentaram suas exigências antes de financiara construção de hidrelétricas; além disso, em todas as bacias, o uso de água para gerar eletricidade compete com a irrigação da agricultura e o abastecimento da população. A captação necessita ser controlada para atender a todos os setores.

REJEIÇÃO AOS GRANDES RESERVATÓRIOS DAS USINAS HIDRELÉTRICAS

A rejeição às grandes barragens é produto de um histórico de erros no setor. Como exemplos podem ser citados:

- A Usina Hidrelétrica de Tucuruí, ver figura 1, onde a floresta submersa, ao se deteriorar pelo alagamento passou a liberar substâncias tóxicas, que além de corroer as turbinas, também, passou a: produzir metano e gerar condições para a ocorrência da metalização do mercúrio; a decomposição da vegetação provocou, ainda, a emissão de gás carbônico, que juntamente com o metano, cria um impacto significativo, contribuindo para o agravamento do efeito estufa; a presença de mosquitos do gênero Anopheles, vetor principal da malária, e uma praga de mosquitos da espécie Mansonia, bastante resistente e capazes de darem até 600 picadas por hora, transmissores da elefantíase, tornando a vida intolerável nas áreas onde se encontram, provocando a mudança dos residentes na região;
- A Usina Hidrelétrica de Balbina, ver figura 2, erguida nos anos 80 no Rio Uatumã, no Amazonas; a barragem que inundou 2360 km² (mais de quatro vezes Belo Monte) deu origem a inúmeros impactos ambientais, entre eles: inundação de uma extensa área de floresta nativa; o reservatório da usina hidrelétrica alterou a composição química d'água e consequentemente sua acidez, e até recentemente as turbinas apresentavam problemas de corrosão e depósito de material orgânico; interrupção do ciclo biológico de várias espécies de fauna e flora (Silva, 2005).

Figura 1 - Usina Hidrelétrica de Tucuruí: Visão parcial do reservatório. Fonte: Arquivo próprio.

Figura 2 – Usina Hidrelétrica de Balbina – Formação do reservatório com inundação de uma área de floresta. Fonte: Arquivo próprio.

O problema apresentado, em grande parte, tem sua culpa atribuída aos planejadores do passado, que não apresentavam percepção ambiental. As gerações futuras receberam uma herança de práticas infelizes e contraproducentes, que agora assombram os sonhos onde habitam a perspectiva de futuros projetos hídricos.

A seguir apresenta-se a tabela 3, com referência aos grandes reservatórios de usinas hidrelétricas. A maioria dos ambientes lênticos brasileiros é constituída por represas.

Tabela 3 – Usinas Hidrelétricas X Área dos Reservatórios

Usinas Hidrelétricas	Estado	Área (km²)	Tipo
Sobradinho	BA	4214	R
Tucuruí	PA	2430	R
Balbina	AM	2360	R
Porto Primavera	SP/MS	2140	R
Serra da Mesa	GO/TO	1784	R
Itaipu	PR	1350	R
Furnas	MG	1340	R
Ilha Solteira	SP/MS	1260	R
Três Marias	MG	1142	R
Peixe	GO	940	R
Itaparica	BA/PE	834	R
Três Irmãos	SP/MS	817	R
Itumbiará	MG/GO	760	R
São Simão	MG/GO	722	R
Água Vermelha	MG/SP	642	R
Promissão	SP	605	R
Samuel	RO	560	R
Capivara	SP/PR	513	R
Emborcação	MG/GO	455	R
Jurumirim	SP	446	R
Nova Ponte	MG	440	R
Marimbondo	MG/SP	438	R
Xavantes	SP	400	R
Manso	MT	387	R
Boa Esperança	PI/MA	352	R
Orós	CE	350	R
Jupiá	SP/MS	335	R
Barra Bonita	SP	334	R
Paraitinga	SP	255	R
Paraibuna	SP	254	R
Peixotos	MG/SP	250	R
Passo Real	RS	226	R
Volta Grande	MG/SP	222	R

Rosana	Rosana SP/PR 218		R
Nova Avanhandava	SP	217	R
Salto Santiago	PR	208	R
A. R. Gonçalves	RN	195	R
Pedra do Cavalo	BA	186	R
Piratininga	SP	177	R
Passo Fundo	RS	151	R
Itá	SC	141	R
Porto Colômbia	MG/SP	140	R
Foz da Areia	PR	139	R
Billings	SP	127	R
Ibitinga	SP	122	R

Fonte: Sperling (1999)

IMPACTOS AMBIENTAIS DOS RESERVATÓRIOS – USINAS HIDRELÉTRICAS

O projeto de uma usina hidrelétrica compreende diversas fases, mas o estudo preliminar merece relevante destaque, pois se constitui na estrutura para o desenvolvimento das demais fases. O desenvolvimento desse estudo abrange vários ramos da engenharia, a saber: hidrologia, hidráulica, geologia aplicada, mecânica dos solos e das rochas, estática, mecânica, eletricidade, etc. e, a partir da Conferência de Estocolmo, em 1972, ocorreu à valorização das ciências ambientais, tendo por origem os alertas do mundo científico acadêmico, tendo-se como resultado a necessidade da formação de equipes multidisciplinares para o desenvolvimento do estudo de uma usina hidrelétrica.

A Resolução CONAMA N^2 01 de 23 de setembro de 1986, no Art. 2° , identifica como atividade modificadora do meio ambiente as obras de construção civil, como por exemplo, as usinas hidrelétricas. A partir dessa resolução o estudo preliminar de uma usina hidrelétrica será tão mais completo quanto maior o número de atendimento de viabilidades: técnica, econômica, financeira, social, jurídica, política e ambiental, também entendidas como sustentabilidades ou dimensões. Em países da Europa, as sustentabilidades são entendidas como domínios de estudos compostos por: ecologia e ambiente, economia, direito, saúde, sócio-cultura e relações internacionais.

Segundo Tundisi (2003), o reservatório oriundo do barramento do curso d'água, representa uma das grandes alterações do ciclo hidrológico e de impactos ambientais nas diferentes porções do meio ambiente, quanto ao tipo: Positivo (Benéfico) e Negativo (Adverso), a saber:

A. Impacto Ambiental – Quanto ao Tipo: Positivo (Benéfico)

- 1. Produção de energia hidroeletricidade;
- 2. Criação de purificadores de água com baixa energia;
- 3. Retenção de água no local;
- 4. Fonte de água potável e para sistemas de abastecimento;
- 5. Representativa diversidade biológica;
- 6. Maior prosperidade para setores das populações locais;
- 7. Criação de oportunidades de recreação e turismo;
- 8. Proteção contra cheias das áreas a jusante;
- 9. Aumento das possibilidades de pesca;
- 10. Armazenamento de água para períodos de seca;
- 11. Navegação;
- 12. Aumento do potencial para irrigação;
- 13. Geração de empregos;
- 14. Promoção de novas alternativas econômicas regionais;
- 15. Controle de enchentes;
- 16. Aumento de produção de peixes por aquacultura.
- B. Impacto Ambiental Quanto ao Tipo: Negativo (Adverso)
- Deslocamento das populações;
- Emigração humana excessiva;
- 3. Deterioração das condições da população original;
- 4. Problemas de saúde pela propagação de doenças hidricamente transmissíveis;

- 5. Perda de espécies nativas de peixes de rios;
- 6. Perda de terras férteis e de madeira;
- 7. Perda de várzeas e ecótonos terra/água estruturas naturais úteis. Perda de terrenos alagáveis e alterações em habitats de animais;
- 8. Perda de biodiversidade (espécies únicas); deslocamento de animais selvagens;
- 9. Perda de terras agrícolas cultivadas por gerações, como arrozais;
- Excessiva imigração humana para a região do reservatório, com os consequentes problemas sociais, econômicos e de saúde:
- 11. Necessidade de compensação pela perda de terras agrícolas, locais de pesca e habitações, bem como peixes, atividades de lazer e de subsistência;
- 12. Degradação da qualidade hídrica local;
- 13. Redução das vazões a jusante do reservatório e aumento em suas variações;
- 14. Redução da temperatura e do material em suspensão nas vazões liberadas para jusante;
- 15. Redução do oxigênio no fundo e nas vazões liberadas (zero em alguns casos);
- 16. Aumento do H₂S e do CO₂ no fundo e nas vazões liberadas;
- 17. Barreira à migração de peixes;
- 18. Perda de valiosos recursos hídricos e culturais;
- 19. Perda de valores estéticos;
- 20. Perda da biodiversidade terrestre em represas da Amazônia;
- 21. Aumento da emissão de gases do efeito estufa, principalmente em represas em que a floresta nativa não foi desmatada.

Segundo Silva et al. (2005), os impactos ambientais do reservatório, compreendem:

- A. Impacto sobre a sociedade
- 1. Desativação da atividade agrícola;
- 2. Diminuição de empregos;
- 3. Aumento do valor da terra.
- B. Impacto sobre a infraestrutura rural e urbana
- 1. Rodovias;
- 2. Serviços;
- 3. Infraestrutura urbana.
- C. Impacto sociocultural
- 1. Diminuição do número de empregos;
- 2. Aumento de endemias;
- 3. Inundação de povoados;
- 4. Inundação de áreas de lazer;
- 5. Impactos sobre a paisagem;
- 6. Cultural.
- D. Impacto sobre o meio físico
- 1. Sismicidade:
- 2. Erosão;
- 3. Deslizamento;
- 4. Microclima.
- E. Impacto no meio biológico
- 1. Perda do ecossistema (inundação, perda da floresta, etc.)
- Alterações na qualidade d'água;
- 3. Plantas aquáticas;
- 4. Novos ambientes aquáticos;
- 5. Pesca.

TURBINAS TIPO BULBO - TECNOLOGIA SUSTENTÁVEL

Basicamente trata-se de uma unidade geradora composta de uma turbina Kaplan de eixo horizontal acoplada a um gerador, também horizontal, envolto por uma cápsula metálica (bulbo), ver figuras 3 e 4. A cápsula por sua vez fica imersa no fluxo d'água, isto acarreta um equipamento que exige uma vedação mais minuciosa, o que implica num espaço menor para o acesso de manutenção. Opera em quedas abaixo de 20 m. Essas turbinas possibilitam a exploração do potencial hidríco da Amazônia, com menores impactos ambientais, por permitir o aproveitamento de baixas quedas e altas vazões. Como o fluxo é axial, ou seja, paralelo ao eixo, as passagens hidráulicas das unidades bulbo são mais simples. Foram inventadas na década de 30. As primeiras foram construídas pela empresa Escher Wyss em 1936. A maior unidade tipo Bulbo construída encontra-se no Japão, na usina de Tadami, que possui 65,8 MW de potência, queda de 19,8 m e rotor com diâmetro de 6,70 m. No Brasil o planejamento da construção das Usinas Hidrelétricas de Santo Antônio e Jirau indicam no projeto de cada usina a instalação de 44 turbinas do tipo Bulbo com potência unitária igual a 73 MW e 75 MW, respectivamente. As turbinas tipo Bulbo a serem instaladas nestas usinas serão as maiores do mundo (Silva, 2011).

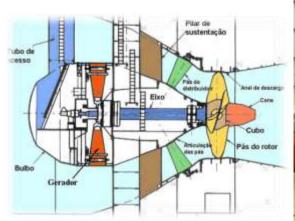


Figura 3 – Esquema de uma turbina tipo Bulbo -Usina Hidrelétrica de Santo Antônio. Fonte: Arquivo próprio.

Figura 4 — Vista das pás de uma turbina tipo bulbo Usina Hidrelétrica de Santo Antônio. Fonte: Arquivo próprio.

IMPACTOS DE USINAS HIDRELÉTRICAS: PÓS-IMPLANTAÇÃO E OPERAÇÃO

Os estudos apresentados por Tundisi (2003) e Silva et al (2005) referem-se basicamente a um cenário que corresponde aos impactos ambientais oriundos da construção de reservatórios de usinas hidrelétricas.

Tem-se creditado às usinas hidrelétricas a produção de alterações desfavoráveis ao meio ambiente, em especifico as suas porções físicas. Como impactos ambientais desfavoráveis podem ser citados:

- A transformação dos desapropriados em indivíduos sem terra ou indigentes urbanos, em virtude da inapropriada compensação, que se configura através da transferência de residência;
- A inundação de hectares de terra, causando o afogamento de inúmeras espécies de fauna e flora;
- A transformação dos rios em reservatórios de águas estagnadas e poluídas;
- Fontes de diversas doenças de veiculação hidríca.

O presente estudo apresenta um novo cenário, no qual se faz destacar os impactos ambientais da bacia hidrográfica no reservatório de uma usina hidrelétrica.

Percepção da Bacia Hidrográfica

O meio ambiente que constitui a bacia hidrográfica, ver figura 5, de um rio é composto por duas porções, uma biogeofísica e outra sócio-econômico-cultural, embora o homem seja parte destas porções, normalmente, coloca-se como se não o fosse e continuamente tenta mantê-las sobre seu domínio.

Figura 5 – Usina Hidrelétrica de Santo Antônio – Percepção do empreendimento na bacia hidrográfica. Fonte: http://www.google.com.br

O uso do solo pelo homem, tem resultado na escassez de terras. Segundo Silva, Schulz e Camargo (2003), essa escassez vem forçando o homem a adotar dois tipos de atitudes, a saber:

- A busca de novas terras que naturalmente s\(\tilde{a}\) capazes de produzir quantidades suficientes de alimentos de modo a manter o sustento humano;
- Emprego de tecnologias que permitam a produção de matéria-prima alimentos e utensílios (fibra, couro, madeira, etc.) para a manutenção da sua vida e, de modo a gerar possibilidades que permitam o atendimento das suas atividades, favorecendo, assim, a sua permanência em um mesmo local.

O uso do solo bom ou mal, ver figura 6, está intimamente ligado ao avanço da tecnologia gerada pelo homem (Vink, 1975). Os recursos naturais apresentados na bacia hidrográfica são finitos e, o entendimento das suas limitações dentro do domínio econômico (juros altos, prazos curtos, financiamentos viciosos, arrendamentos por períodos breves, maus salários), dentro do domínio físico (solos, topografia, precipitações, estiagens e ventos) e, dentro do domínio social (estado de educação do lavrador, relações entre o homem e a terra, densidade demográfica, uso e posse da terra) são parâmetros que nos permitem identificar o bom ou mau uso dos recursos naturais.

De acordo com Figueiredo (1994), existem outros parâmetros que são apontados como possíveis causas do mau uso e consequente desgaste do recurso solo, a saber:

- 1. Má distribuição de rendas: a elevada concentração de rendas de uma reduzida parcela da população é a causa mais perversa que permite a implantação do ciclo da miséria em uma nação;
- 2. Crescimento (Explosão) Industrial: o cenário de acelerada industrialização dos centros urbanos, no final da década de 1950 e início da década de 1960, deu origem a um fluxo migratório intenso em sua direção até o início da década de 1980, gerando um acréscimo na população dessas cidades sem a contrapartida de investimentos nos instrumentos urbanos;
- 3. Planejamento urbano/rural "deturpado": a falta de integração entre as várias esferas governamentais associadas a interesses casuísticos e a uma visão distorcida de desenvolvimento das cidades colaborou, por muitos anos, para a elaboração de inúmeros "Planos Diretores" inexpressivos e desgarrados da realidade;
- 4. Ocupação desordenada: consequência direta dos itens anteriores, este tópico traduz a omissão histórica do poder público no sentido de coibir a presença humana, seja aquela referente à habitação ou a indústria, em encostas, baixadas e várzeas, com o intuito de impedir a formação e proliferação de áreas de risco, bem como evitar a degradação do meio ambiente;
- 5. Clandestinidade das favelas: outro erro histórico e sem a perspectiva de correção em curto prazo é o fato das favelas serem consideradas, isto é, não serem enfocadas como existentes, de fato e de direito, pelos órgãos públicos e pela sociedade em geral. Assim, todos os cadastros e registros são aproximados, não havendo uma sistemática adequada para tratar a questão;

6. Legislação: pode-se afirmar que algumas leis sobre o assunto, tanto do ponto de vista jurídico como do técnico (diretrizes para ocupação, execução de obras de terra, fiscalização, penalidades, multas, entre outras), a legislação específica tem se mostrado ineficaz e anacrônica para enfrentar com determinação e em sua totalidade tão grave problema.

Figura 6 – Usina Hidrelétrica de Santo Antônio – Percepção da bacia hidrográfica com a identificação de alterações.

Fonte: http://www.google.com.br

CONSIDERAÇÕES FINAIS

Os prejuízos ambientais e sociais podem ser evitados com programas de mitigação, que compreendem: relocação de infraestrutura, relocação de propriedades e povoados, mitigação da previsão sobre o mercado de trabalho, riscos à saúde, atividade mineraria, desmatamento, recuperação do canteiro de obras, recuperação de ecossistemas, manejo da fauna: terrestre (mamíferos) e aquáticos (peixes), manejo das bacias hidrográficas: uso desordenado das bacias, assoreamento, atividades agrícolas, etc., conservação da emergia; e medidas compensatórias, que compreendem: implantação de áreas de conservação, projetos de desenvolvimento sustentável e programas decentes de benefícios para a população afetada.

O conceito de sustentabilidade se faz verificar principalmente quando se estuda a relação área alagada e potência, ver tabela 4, considerando-se que a principal matriz de energia elétrica é função da quantidade de água armazenada, nos reservatórios das usinas hidrelétricas, e a utilização da tecnologia de turbinas tipo bulbo que possibilitam a exploração do potencial hídrico, principalmente na Amazônia, com menores impactos ambientais, por permitir o aproveitamento de baixas quedas e altas vazões, nos faz repensar a viabilidade de projetos de usinas hidrelétricas sem reservatórios.

O maior impacto de uma usina hidrelétrica independe do tamanho do reservatório, ele vem do desmatamento e dos conflitos gerados pela chegada de milhares de pessoas atraídas pelas obras. O polo de devastação ilegal é o entorno das obras da usina hidrelétrica.

Tabela 4 – Área alagada, potência firme e fator de capacidade das maiores usinas hidrelétricas conectadas ao Sistema Interligado Nacional Brasileiro (SIN)

Usina	Área Alagada	Potência MW	Relação entre	Potência	
Hidrelétrica de	km ²		km ² /MW	Firme	f.c.%
Energia				MW	
(UHE)					
Sobradinho	4.380,8	1.050,3	4,17	531	51
Três Marias	4.059,0	1.980	2,05	-	-
Tucuruí I e II	3.014,2	8.370	0,36	4.140	49
Porto Primavera	2.977,0	1.540	1,93	1.017	66
Balbina	2.360,0	250	9,44	-	-
Serra da Mesa	1.254,1	1.275	0,98	671	53
Furnas	1.406,3	1.216	1,16	598	49
Itaipu (Brasil e Paraguai)	1.350,0	14.000	0,10	11.620	83

Ilha Solteira	1.357,6	3.444	0,39	1.949	57
Luiz Gonzaga					
(Itaparica)	839,4	1.479,6	0,57	959	65
Itumbiara	749,1	2.082,0	0,36	1.015	49
São Simão	716,2	1.710,0	0,42	1.281	75
Água Vermelha					
(José Ermírio de Moraes)	673,6	1.396,2	0,48	746	53
Belo Monte	516,0	11.200,0	0,046	4.600	41
Marimbondo	452,4	1.440,0	0,31	726	50
Embarcação	403,9	1.192,0	0,34	497	42
Jupiá	321,7	1.551,2	0,21	886	57
(Eng. Souza Dias)					
Santo Antônio	271,0	3.150,0	0,086	2.200	70
Jirau	258,0	3.300,0	0,078	2.184	66

Fonte: Marcato (2008)

CONCLUSÃO

O plano decenal da Empresa de Pesquisa Energética (EPE), órgão do Ministério de Minas e Energia, que planeja a expansão do sistema, indica que das 47 novas usinas hidrelétrica (*Rio Madeira*: Jirau, Santo Antônio; *Rio Ji-Paraná*: Tabajara; *Rio Comemoração*: Rondon II; *Rio Aripuanã*: Dardanelos; *Rio Jari*: Santo Antônio do Jari; *Rio Araguaia*: Cachoeira Caldeirão, Ferreira Gomes; *Rio Xingu*: Belo Monte; *Rio Tapajós*: São Luiz do Tapajós, Jatobá, Chacorão; *Rio Jamanxin*: Cachoeira do Caí, Jamanxim, Jarim Ouro; *Rio Juruena*: São Simão Alto, Salto Augusto Baixo, Cachoeirão, Juruema; *Rio Teles Pires*: São Manoel, Teles Pires, Colider, Sinop, Magessi. *Rio Tocantins*: Marabá, Serra Quebrada, Estreito, Tupiratins, Tocantins (Ipueiras), Porteiras, Maranhão Baixo; *Rio Tocantinzinho*: Mirador; *Rio Paranã*: Paranã, São Domingos; *Rio do Sono*: Novo Acordo, Brejão; *Rio Perdida*: Perdida; *Rio Araguaia*: Araguanã, Torixoréu, Diamantino, Couto Magalhães; Rio das Mortes: Toricoejo, Água Limpa) na região norte, onde se encontra o maior potencial inexplorado do Brasil, e desse total, 30 usinas hidrelétricas não terão barragens.

O resultado disso é a perda/redução na capacidade de armazenar/gerar energia. O cenário que se descortina para uma nação que até 2015 será a 5ª Potência Econômica do planeta não é dos mais promissores, pois nos anos 70 a água armazenada nos reservatórios das usinas hidrelétricas assegurava mais de 20 meses de energia, mesmo sem uma gota de chuva; no presente o armazenamento aguenta cerca de 5 meses, e a previsão para o futuro, isto é, 2019 é de apenas 3,5 meses.

RECOMENDAÇÕES

Torna-se relevante destacar no encerramento desse trabalho que apenas 50% da Amazônia foi prospectada geologicamente. Até o momento, pelo que se tem conhecimento, somos a sexta maior reserva de urânio do planeta. No caso da hidroeletricidade estamos aproveitando somente 1/3 dos 260 mil MW, estimados no país. A hidroeletricidade é a fonte que apresenta maior eficiência a conversão da energia (potencial) d' água em eletricidade, sendo superior a 90%. Na outras fontes, a que avança mais, chega a pouco mais de 40%, as turbinas a gás. As usinas térmicas também se incluem nesse leque, porém apresentam limitações, poluem.

A decisão de se construir novas usinas hidrelétricas com pequenos reservatórios, ou até mesmo sem reservatório, necessita ser repensada, pois a projeção econômica e tecnológica da nação está diretamente vinculada a sua quantidade de energia armazenada.

Não se pode com olhos do presente, olhar para o passado e identificar, com critérios do presente, erros na construção de hidrelétricas do século XX, de modo a impedir no futuro, século XXI, a construção de usinas hidrelétricas com reservatórios. A ausência de reservatórios em usinas hidrelétricas constitui-se numa promissória em branco, a ser paga no futuro.

Somente o envolvimento de engenheiros pesquisadores com a produção de conhecimentos, em obras do tipo usinas hidrelétricas com reservatórios, nos afastará do enorme atraso que se descortina.

REFERÊNCIA BIBLIOGRÁFICA

- 1. CRUZ, P. T. *100 barragens brasileiras: casos históricos, materiais de construção, projeto.* São Paulo. Oficina Textos, 1996. 647p.
- FIGUEIREDO, R. B. Engenharia Social: soluções para áreas de risco. Makron Books, São Paulo, SP, 1994.
- 3. HINRICHS, R; KLEINBACH, M. Energia e meio ambiente. São Paulo: Pioneira Thomson Learning, 2003
- 4. Home Page http://www.google.com.br> Disponível em 21 jun 2006.
- 5. Home Page < http://www.google.com.br> Disponível em 09 set 2009.
- 6. MARCATO, M. A. *Itaipu, energia e diplomacia*. Revista Engenharia. Órgão Oficial do Instituto de Engenharia. São Paulo. Ano 66, Edição 598, p. 154 163.
- 7. MIRANDA, E. E. A água na natureza e na vida dos homens. Aparecida/SP. Idéias e letras. 2004.
- 8. MÜLLER, A. C. Hidrelétricas, meio ambiente e desenvolvimento. São Paulo. Makron Books. 1995.
- 9. SCHREIBER, G. P. Usinas hidrelétricas. São Paulo. Edgard Blücher, Rio de Janeiro, ENGEVIX. 1977.
- 10. SPERLING, E. V. Morfologia de lagos e represas. Belo Horizonte. DESA/UFMG, 1999.
- 11. SILVA, A. M.; SCHULZ, H. E.; CAMARGO, P. B. *Erosão e hidrossedimentologia em bacias hidrográficas*. São Carlos: Ed. Rima, 2003. 138p.
- 12. SILVA, P.J. Fichário: *Grandes Estruturas Obras Hidráulicas Fluviais: Barragens e Hidrovias*. São Paulo: Faculdade de Engenharia da Fundação Armando Alvares Penteado FEFAAP. 2011.
- 13. SILVA, Pedro José da et al. *O ecologismo e o economismo das usinas hidrelétricas*. In Anais do VI Seminário Nacional da Gestão da Informação e do Conhecimento no Setor de Energia Elétrica, 2005
- 14. TUNDISI, J. G. Água no século XXI enfrentando a escassez. São Carlos: Ed. Rima, 2003. 247p.
- 15. VINK, A. P. A. Land use in advancing agriculture. Springer-Verlag Berlim Heidelberg, New York, 1975.