

245 - DIAGNÓSTICO DO SISTEMA DE ABASTECIMENTO DE ÁGUA BRASÍLIA, DISTRITO DE OUTEIRO, BELÉM-PA

Eduardo Ueslei de Souza Siqueira⁽¹⁾

Engenheiro Sanitarista e Ambiental (UFPA). Especialização em Gerenciamento de Projetos de Recursos Hídricos (IFCE). Coordenador Técnico do Núcleo Gestor de Redução e Controle de Perdas da Companhia de Saneamento do Pará (COSANPA).

Gilson Sarmento Castro⁽²⁾

Engenheiro Sanitarista e Ambiental (UFPA). Empregado público da COSANPA.

Marcelo Assunção Miranda⁽³⁾

Engenheiro Sanitarista e Ambiental (UFPA). Empregado público da COSANPA.

Layse de Oliveira Porteglio⁽⁴⁾

Engenheiro Sanitarista e Ambiental (UFPA). Engenheira Sanitarista na COSANPA.

Tatiana Barbosa da Costa⁽⁵⁾

Engenheira Sanitarista pela Universidade Federal do Pará (UFPA). Mestre em Engenharia Ambiental pela Universidade Federal de Santa Catarina (UFSC). Coordenadora Geral do Núcleo Gestor de Redução e Controle de Perdas da Companhia de Saneamento do Pará (COSANPA).

Endereço⁽¹⁾: Av. Magalhães Barata, 1201 – São Braz – Belém – PA – CEP: 66.060-670 - Brasil - Tel: +55 (91) 3202-8521 - e-mail: eduardo.siqueira@cosanpa.pa.gov.br.

RESUMO

O presente apresenta diagnóstico de um Sistema de Abastecimento de Água (SAA) localizado no Distrito de Outeiro, município de Belém-Pa. O sistema estudado é o SAA Brasília e sua área de abrangência tem população de cerca de 6869 habitantes. O sistema é composto por captação subterrânea, conjunto motorbomba, sistema de tratamento, reservatório elevado e rede de distribuição e nessa área o índice de atendimento por abastecimento de água é cerca de 78,40% (IBGE, 2010). Foram realizados levantamentos de dados bibliográficos do IBGE e literatura técnica relacionada e dados operacionais da Companhia de Saneamento do Pará (COSANPA) para a caracterização do sistema e construção de um modelo hidráulico visando a realização de diagnóstico do SAA. Concluiu-se que o sistema apresenta volume de produção adequada para a sua área de atendimento, porém a existência de trechos com diâmetro insuficiente e a ausência de setorização e estanqueidade da rede em relação a áreas adjacentes provocam prejuízos ao SAA Brasília. A resolução destes problemas deve resultar em um SAA mais eficiente e compatível com as recomendações da NBR 12218.

PALAVRAS-CHAVE: Diagnóstico, Abastecimento de água, Outeiro - Belém - PA.

INTRODUÇÃO

As ações que visam melhoria da eficiência dos Sistemas de Abastecimento de Água – SAA, são cada vez mais frequentes nas concessionárias de saneamento por todo o Brasil. Esta mudança ocorre devido ao aumento da necessidade de melhoria da eficiência da gestão das empresas de saneamento, consciência ambiental, diminuição da disponibilidade dos recursos hídricos e às limitações financeiras cada vez maiores para acesso a recursos financeiros para obras de infraestrutura em saneamento.

Comumente, os projetos e investimentos tem como foco a ampliação da capacidade de produção e distribuição não se levando em consideração os elevados índices de perdas nos sistemas de em suas diversas etapas (captação, adução, tratamento, reserva e distribuição de água) e necessidades de controle operacional rigoroso e visando a melhoria da eficiência.

MATERIAL E MÉTODOS

CARACTERIZAÇÃO DO SISTEMA DE ABASTECIMENTO

O município de Belém (PA) se localiza na região norte do Brasil, é a capital do estado do Pará e possuía no ano de 2016 população igual a 1.446.042 habitantes, segundo estimativa do Instituto Brasileiro de Geografia e Estatística (IBGE). Possui área territorial igual a 1.059,46 Km². O município apresenta território continental e insular (39 ilhas), 14 bacias hidrográficas e 40% do território abaixo do nível do mar. O índice de atendimento por rede geral de abastecimento de água em Belém é de 75,5% segundo dados do Plano Municipal de Saneamento. O serviço de abastecimento de água é prestado pela companhia de Saneamento do Pará (COSANPA) desde o ano de 2016.

O município é dividido em 8 distritos administrativos: Distrito Administrativo de Mosqueiro (DAMOS); Distrito Administrativo de Icoaraci (DAICO); Distrito Administrativo do Benguí (DABEN); Distrito Administrativo do Entroncamento (DAENT); Distrito Administrativo da Sacramenta (DASAC); Distrito Administrativo de Belém (DABEL); Distrito Administrativo do Guamá (DAGUA); Distrito Administrativo de Outeiro (DAOUT), neste último está localizada a área objeto deste estudo.

O distrito DAOUT conta com 3 sistemas de abastecimento de água (SAA), chamados: Água Boa, São João do Outeiro e Brasília. Este último é o sistema objeto deste estudo. A figura 1, a seguir, apresenta vista dos referidos SAA do distrito DAOUT.

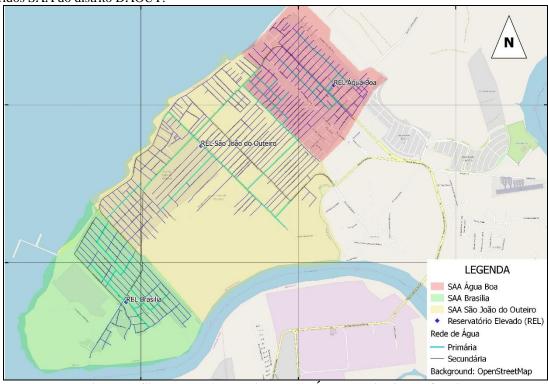


Figura 1: Sistemas de Abastecimento de Água do Distrito de Outeiro.

Segundo Belém (2014), o SAA Brasília tem sede com área de 1.386,75 m² localizada na Tv. Brasília, esquina com Juscelino Kubitschek, bairro Brasília, sob as coordenadas geográficas 1°16'48.03"S e 48°28'29.17"O e apresenta as seguintes características:

- 1 reservatório elevado, de forma cilíndrica, construído em concreto armado, com capacidade para 500.000 litros de água e altura 12,00m;
- 1 Poço tubular profundo com 270,00 metros de profundidade revestido com tubos de aço carbono Schedule 40 com as seguintes dimensões: Ø 12" da câmara de bombeamento até 110,00 metros onde reduz para 8" até a profundidade 230,00 metros. A partir de 230,00 metros até a profundidade de 270,00 metros está instalado 40,00 metros de filtros de aço inox AISI-304 com diâmetro de 8";

- Subestação abaixadora de tensão composta de poste, transformador de 112,5KVA e quadro de medição;
- Conjunto motor-bomba submerso instalado a 78,00m de profundidade, com potência de 85 CV marca EBARA e quadro de comando com chave compensadora de partida automática e voltagem 220 V.

A rede de distribuição da unidade é composta em PVC com uma extensão total de 24.200 m e apresenta 1.625 ligações domiciliares, sendo todas contempladas com hidrômetros de 3,00 m³/h de vazão máxima. A Tabela 1 apresenta o comprimento de redes por diâmetro do SAA Brasília (BELÉM, 2014).

Tabela 1: Extensão da rede de água do SAA Brasília.

DIÂMETRO	EXTENSÃO
250	20
200	685
160	935
100	1575
75	2915
50	18070

Segundo dados do Anuário Estatístico de Belém, acerca da forma de abastecimento de água, os domicílios da área de estudo apresentavam as características (Tabela 2).

Tabela 2: Domicílios particulares permanentes por tipo de abastecimento de água.

TIPO DE ABASTECIMENTO	DOMICÍLIOS
Rede geral	0
Poço ou nascente na propriedade	3538
Poço ou nascente fora da propriedade	578
Água da chuva armazenada em cisterna	98
Água da chuva armazenada outras formas	7
Rio, açude, lago ou igarapé	407
Carro-pipa	-
Outros	97

Fonte: BELÉM (2012).

ESTUDO POPULACIONAL E CÁLCULO DE DEMANDA

O estudo populacional visa estimara variação do quantitativo populacional de uma determinada região com base em métodos consolidados na literatura técnica e fazendo uso de dados oficiais, especialmente os censos demográficos do Instituto Brasileiro de Geografia e Estatística (IBGE). Estetipo de estudo é fatorprimordial quando nos referimos ao abastecimento de água, visto que a população não cresce de forma ordenada e constante com o passar do tempo.

Os cálculos de população tiveram como base dados dos dois últimos censos do IBGE para a obtenção das taxas de crescimento populacional, sendo uma a taxa de crescimento acumulada entre os anos de 2000 e 2010 e foram realizados pelos métodos aritmético e geométrico, os quais apresentaram quantitativos anuais similares, no entanto, optou por adotar os resultados do método geométrico para os cálculos de demanda. A Tabela 3 apresenta os cálculos estimativos de população.

Tabela 3: Estimativa de população da área de abrangência do SAA Brasília.

ANO	ARITMÉTICO	GEOMÉTRICO
2019	6752	6869
2020	6836	6974

Fonte: Adaptado de IBGE (2010).

CONCEPÇÃO OPERACIONAL E MODELO HIDRÁULICO DO SISTEMA

A definição da concepção operacional de um sistema de abastecimento de água pode ser conceituada como um conjunto de estudos e conclusões referentes ao estabelecimento de todas as diretrizes, parâmetros e informações necessárias para caracterizar tal sistema. A caracterização física dos componentes do sistema em conjunto com as informações pertinentes ao consumo de água do setor é de fundamental importância para a modelagem hidráulica e, consequentemente, para o diagnóstico do sistema estudado. Segundo informações da Companhia de Saneamento do Pará (COSANPA), o índice das perdas reais no município de Belém é da ordem de 50%, o que representa um valor significativo, sendo considerado uma perda por ligação de, aproximadamente, 500 L/Lig./dia.

O consumo de água é calculado com base nas características operacionais e nos padrões de consumo de cada região, como sendo o volume total distribuído, medido ou estimado, dividido pela população total servida, em um período. Classificam-se os consumidores, por meio de dados estatísticos da cidade, englobando os dados residenciais, comerciais, públicos e considerando as perdas do próprio sistema, podendo ainda variar de acordo com as condições climáticas, crescimento urbano e outros fatores que são determinantes no uso da água.

Para a construção de modelo hidráulico da rede de água foram obtidos dados de cadastro técnico da COSANPA para a área de estudo, além disso, também foram obtidos dados de pressão, vazão e velocidade instantâneos mensurados para o referido SAA, estes dados estão dispostos na Tabela 4.

Tabela 4: Dados operacionais do SAA Brasília.

Tubela 1. Dudos operacionais do 57111 Brasina.					
DATA	HORÁRIO (h)	VAZÃO (m³/h)	PRESSÃO (mca)	VELOCIDADE (m/s)	
28/05/19	09:40	139,0	11,45	0,92	
29/04/19	10:05	135,0	11,5	0,90	
04/02/19	10:20	133,0	9,0	0,89	
14/12/18	10:45	130,0	9,8	0,87	
27/11/18	09:55	120,0	6,6	0,80	
27/11/18	15:50	83,0	4,8	0,55	
05/09/18	10:40	107,0	7,5	0,71	
22/08/18	15:25	105,0	7,9	0,70	
25/06/18	15:20	113,0	9,4	0,76	
10/05/18	15:25	116,0	8,6	0,78	
18/04/18	15:30	115,0	12,0	0,77	
09/03/18	10:30	117,0	6,9	0,78	
23/02/18	10:20	122,0	6,4	0,81	
15/01/18	15:30	117,0	10,5	0,78	
20/12/17	15:00	116,0	10,5	0,77	
15/02/17	11:15	128,0	7,5	0,85	

Fonte: COSANPA (2019).

A quantidade de água consumida varia continuamente ao longo de um dia, sob influência das atividades e hábitos da população, condições climáticas, entre outros. Há meses em que o consumo de água é maior e dentro de um mês existem dias em que a demanda da água predomina sobre os demais. Assim, as unidades devem ser operadas para funcionar para a demanda média, mas também capazes de suprir as variações que ocorrem ao logo do ano e ao longo dos dias.

RESULTADOS OBTIDOS

A vazão distribuída oscila durante as horas do dia e oscila também nos dias do ano, devido entre outras coisas aos hábitos populacionais e das condições climáticas. Para o cálculo da vazão distribuída no SAA Brasília foi considerada a estimativa populacional realizada na Tabela 3. A construção do modelo foi realizada com o uso das ferramentas Epanet 2.0 e QGIS 2.18. A figura 2 apresenta o modelo construído para o SAA Brasília.

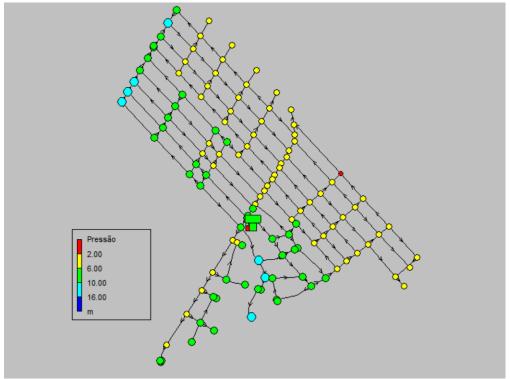


Figura 2: Modelo hidráulico para o sistema existente no SAA Brasília – pressão às 12 horas.

A partir do modelo hidráulico, conforme figura 2, verificou-se que no horário de maior demanda a maior parte da rede apresenta pressão disponível entre 2 e 6 mca, em sua maioria esses nós estão na ordem de 4 mca.

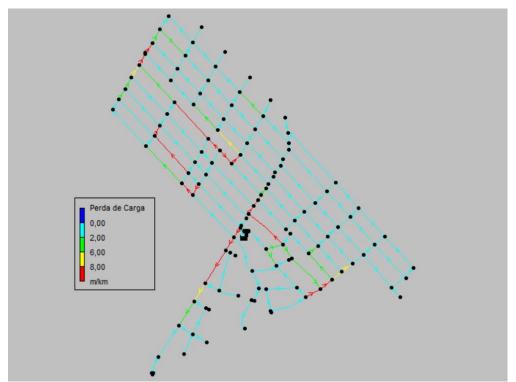


Figura 3: Modelo hidráulico para o sistema existente no SAA Brasília – perda de carga às 12 horas.

Conforme figura 3, as perdas de carga acima de 8m/km implicam em prejuízos significativos na carga hidráulica à jusante desses trechos. Um dos pontos mais significativos deste tipo de ocorrência se dá nas proximidades da saída do reservatório elevado (REL) e implica em menores pressões disponíveis conforme se

pode verificar na figura 2. Nos trechos ao lado esquerdo do REL quando aumentado o diâmetro para 200 mm a pressão nos nós sob sua influência ficam entre 9 e 14 mca às 12 horas, ao invés de 3 a 9 mca com seus atuais diâmetros de tubulação de 50 mm.

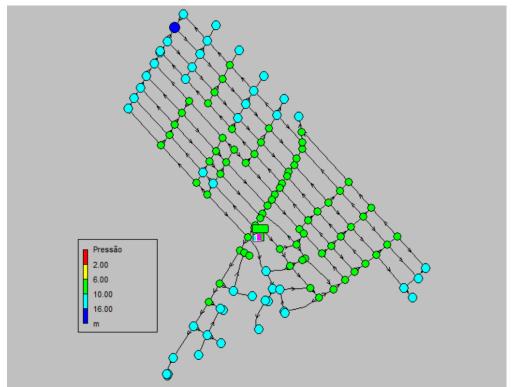


Figura 4: Modelo hidráulico para o sistema existente no SAA Brasília – pressão às 4 horas.

A partir do modelo hidráulico, conforme figura 4, verificou-se que no horário de menor demanda a maior parte da rede apresenta pressão disponível entre 6,5 e 17 mca, em sua maioria esses nós estão na ordem de 9 mca.

Após a simulação hidráulica do SAA existente e cálculo de demanda foi possível verificar que o sistema apresenta produção compatível com a demanda de água estimada para a população da área incluindo suas perdas, apesar disso o de volume de água distribuído tem ocorrências de déficit de pressão e vazão em pontos mais distantes da rede e localizados na área de influência de tubulações de diâmetro insuficiente, conforme tabela 5, a seguir.

Tabela 5: Parâmetros técnicos e Resultados do cálculo de demanda.

DADOS DO SISTEMA EXISTENTE		
Volume médio distribuído (m³)	2844	
Pressão média disponibilizada (mca)	9,1	
Extensão da rede (m)	21812	
ESTIMATIVA DE DEMANDA		
População 2019 (hab)	6869	
Per capita (l/hab.d)	200	
k1	1,2	
k2	1,5	
Demanda distribuição diária (m³)	2472,84	
IPD médio Belém	0,539	
Volume consumido (m³)	1139,979	

Conclui-se que o sistema apresenta volume de produção adequada para a sua área de atendimento, porém a existência de trechos com diâmetro insuficiente e a ausência de setorização e estanqueidade da rede em relação a áreas adjacentes provocam prejuízos ao SAA Brasília. A resolução destes problemas deve resultar em um SAA mais eficiente e compatível com as recomendações da NBR 12218.

AGRADECIMENTOS

À Companhia de Saneamento do Pará - COSANPA pelo fornecimento de dados para desenvolvimento deste trabalho científico.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. COSANPA. Companhia de Saneamento do Pará. Dados Operacionais do SAA Brasília. Belém: 2019.
- 2. IBGE. Dados do Censo 2010. Instituto Brasileiro de Geografia e Estatística. 2010.
- 3. Prefeitura Municipal de BELÉM. (Org.). Plano Municipal de Saneamento Básico de Abastecimento de Água e Esgotamento Sanitário de Belém Pará: Concepção Técnica e Proposições. Belém, 2014. 175 p.