

ANÁLISE DA EFICIÊNCIA DO TRATAMENTO DE ÁGUA UTILIZANDO PROCESSO OXIDATIVO AVANÇADO

Eric Augusto de Medeiros Rodrigues Larbor

1. Introdução e Objetivos

Para a realização da etapa de desinfecção nos processos de tratamento de água, o cloro é comumente utilizado como oxidante e desinfetante principal nas Estações de Tratamento de Água (ETAs). A busca por processos alternativos ao cloro vem crescendo por conta dos subprodutos organoclorados gerados a partir da reação do cloro com a matéria orgânica, como os trihalometanos e ácidos haloacéticos (DI BERNARDO; DANTAS, 2005; LIBÂNIO, 2008). Estudos têm reportado que o tratamento com radiação ultravioleta (UV) pode degradar a matéria orgânica para compostos de baixo peso molecular (MAGNUSON et al., 2002; SHAH et al., 2011), além disso, os Processos Oxidativos Avançados (POAs) baseados em UV, especialmente ultravioleta conjugado com peróxido de hidrogênio (H₂O₂+UV)

Os objetivos deste trabalho são a criação de um reator fotoeletrocatalítico (Figura 1) para examinar a eficiência da peroxidação assistida por radiação ultravioleta em comparação ao cloro, para a balneabilidade de águas de piscina.

2. Metodologia

Foram considerados a variação do oxidante, o cloro (NaClO) e o H₂O₂+UV em dois tempos de reação para avaliar o comportamento do tipo de tratamento ao longo do tempo (3 e 6 horas) (Figura 2). A dosagem do hipoclorito de sódio (NaClO) deu-se a fim de se obter uma concentração de 10 mg/L, comumente utilizada no tratamento de água superficial bruta. Já para a dosagem do peróxido de hidrogênio, estoque 50%, deu-se a fim de se obter uma concentração de 50 mg/L, como orientado pelo fabricante do produto (Maresias Química do Brasil).

3. Resultados e Discussão

Com relação ao cloro residual notou-se concentração apenas no ensaio com cloro e que a dosagem dos 10 mg/L inicial foi suficiente para manter um residual, não ocorrendo uma sub ou superdosagem de cloro. O pH manteve-se numa faixa estável para os dois tipos de tratamento após 6 horas. Já nas 3 primeiras horas percebemos que a dosagem do H₂O₂ baixa um pouco o pH, o que condiz com a literatura. Para a turbidez, notou-se que no branco a turbidez é menor do que na água tratada. Acreditamos que se faria necessária uma etapa preliminar, de filtração para garantir uma melhor homogeneidade da água bruta. Já o resultado <LQ do H₂O₂+UV é inconclusivo, sendo necessária reanálise. Similarmente à turbidez, a água bruta apresentou STD menores do que a água tratada. Porém, neste caso, conseguimos comparar os dois tipos de tratamento entre si. Notamos que o POA demonstra-se mais eficiente que o cloro na oxidação da matéria orgânica. Como a alcalinidade relaciona-se com o pH, também percebemos uma diminuição da alcalinidade com a utilização de peróxido de hidrogênio. Na análise microbiológica, da contagem de bactérias heterotróficas, os dois tipos de tratamentos foram bastante eficientes. A desinfecção com cloro mostrou uma tendência mais estável que o tratamento do H₂O₂+UV ao longo do tempo. No gráfico da Figura 3 pode-se observar melhor este fato. Após 3h os dois estão bem abaixo do valor de referência de 200 UFC/mL, porém o tratamento com H₂O₂+UV partiu de apenas 6 para 17 UFC/mL o tratamento com cloro manteve-se estável, de 23 para 24, mostrando seu potencial residual. Por fim, percebemos que mesmo com uma dosagem eficiente de cloro, há formação de subprodutos, que mesmo voláteis, persistiram após 6 horas de recirculação da água.

Parâmetro	Branco	NaClO 3h	NaClO 6h	H ₂ O ₂ +UV 3h	H ₂ O ₂ +UV 6h
Cloro Residual Livre (mg/L)	<lq< td=""><td>1,3</td><td>0,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	1,3	0,6	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
рН	7,6	7,7	7,5	7,4	7,5
Turbidez (NTU)	1	2,3	2,6	<lq< td=""><td>2,6</td></lq<>	2,6
Sólidos Totais Dissolvidos (mg/L)	52,7	78,6	79,5	55,1	56,4
Alcalinidade Total (mg/L)	23	24	24	18	17
Dureza Total (mg/L)	22	27	28	27	28
Contagem de Bactérias Heterotróficas (UFC/mL)	>1000	23	24	6	17
Pesquisa de Coliformes Totais (P/A em 100 mL)	Presença	Ausência	Ausência	Ausência	Ausência
Pesquisa de Staphylococcus aureus (P/A em 100 mL)	Ausência	Ausência	Ausência	Ausência	Ausência
Trihalometanos totais (mg/L)	na	20	21	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

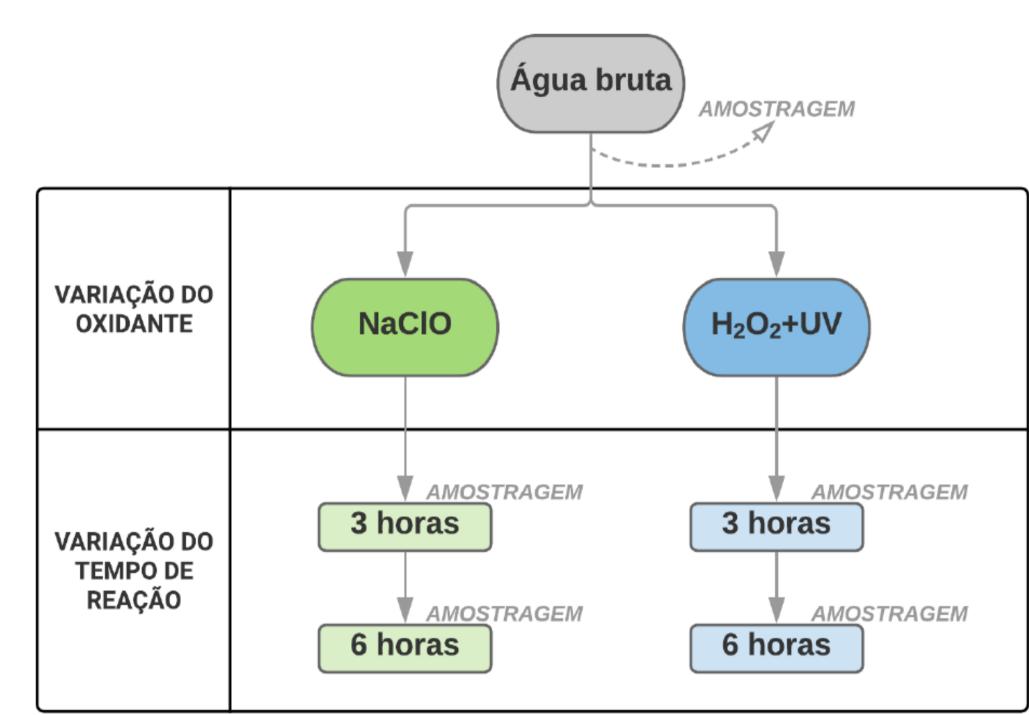


Figura 1: Sistema piloto

Figura 2: Fluxograma da metodologia de tratamento

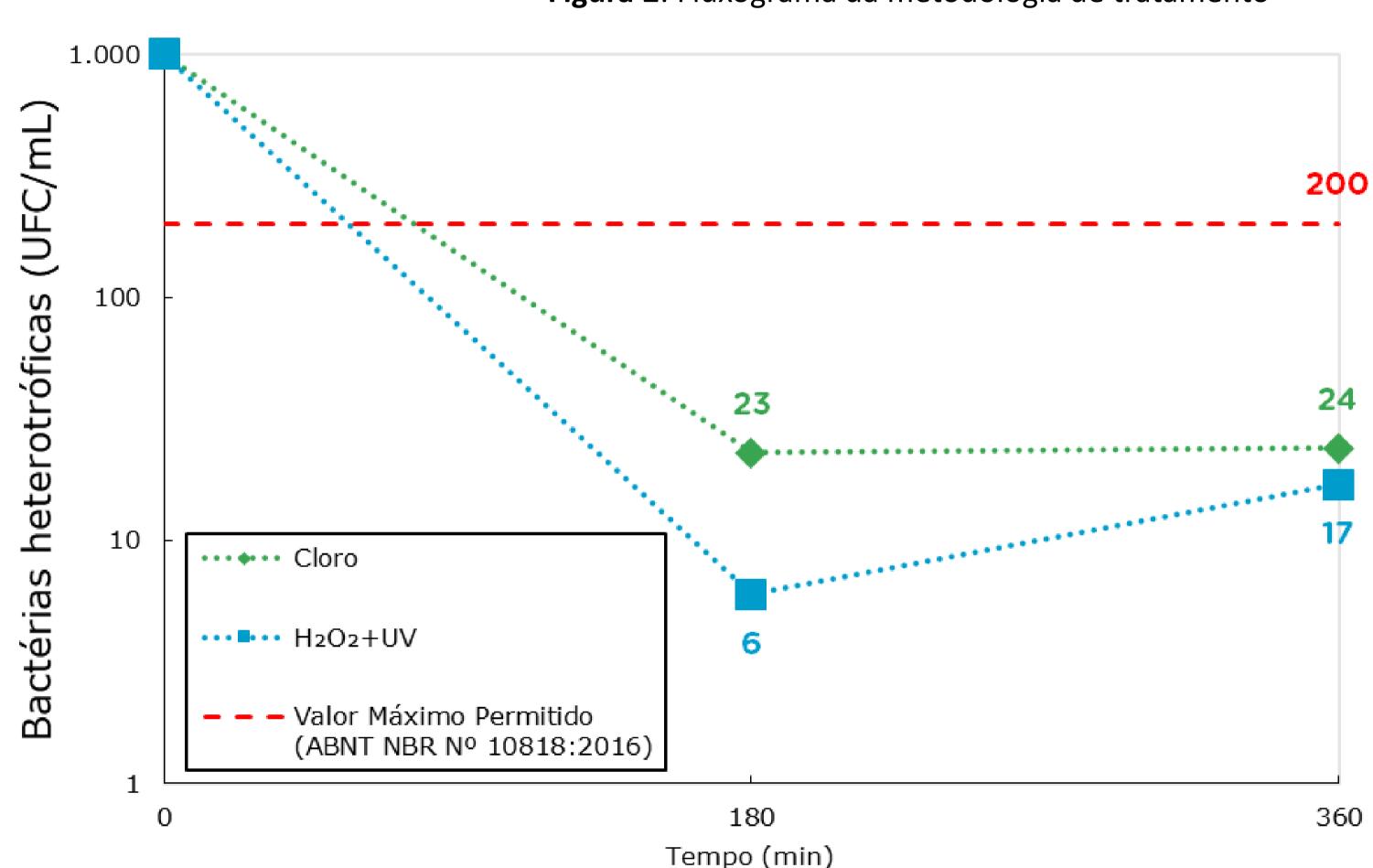


Figura 3: Comparação da contagem de bactérias heterotróficas

4. Conclusões

A partir dos resultados obtidos após o tratamento da água foi possível concluir que o reator fotoeletrocatalítico, que utiliza a peroxidação assistida por radiação ultravioleta como agente oxidante principal apresenta boa eficiência no tratamento de água, em comparação ao tratamento com cloro. Ressaltam-se alguns pontos importantes observados a partir dos resultados físico-químicos e microbiológicos: (i) O tratamento com H_2O_2+UV é livre de cloro e não gera THM como subproduto; (ii) A partir dos resultados de turbidez e STD, onde a água bruta apresentou resultados menores do que a da água tratada, recomenda-se para trabalhos futuros acrescentar uma etapa de filtração anterior ao sistema de tratamento; (iii) H_2O_2+UV foi 74% mais eficiente em comparação com o cloro na inativação de bactérias heterotróficas em 3 horas de tratamento e 29% mais eficiente em 6 horas; e (iv) O H_2O_2+UV não possui efeito residual na inativação de bactérias heterotróficas, fazendo com que, em longos tempos de tratamento, seja necessário dosar mais H_2O_2 para que não ocorra a recontaminação por microrganismos.

5. Referências

DI BERNARDO, Luiz; DANTAS, Angela Di Bernardo. Métodos e técnicas de tratamento de água. São Carlos - SP: RiMa Editora, 2005. v. 2.

LIBÂNIO, M. Fundamentos de Qualidade e Tratamento de Água. 3a. ed. Campinas - SP: Ed. Átomo, 2008.

MAGNUSON, Matthew L et al. Effect of UV irradiation on organic matter extracted from treated Ohio River water studied through the use of electrospray mass spectrometry. Environmental Science & Technology, ACS Publications, v. 36, n. 23, p. 5252–5260, 2002.

SHAH, Amisha D. et al. Impact of UV Disinfection Combined with Chlorination/Chloramination on the Formation of Halonitromethanes and Haloacetonitriles in Drinking Water. Environmental Science & Technology, v. 45, n. 8, p. 3657–3664, 2011. PMID: 21417331. DOI: 10.1021/es104240v

