

# PLANO DIRETOR DE REDUÇÃO DE PERDAS DE ÁGUA – EXPERIÊNCIAS, RESULTADOS E OS DESAFIOS NA MAIOR CIDADE DO ESTADO DE SANTA CATARINA

### Bruno Borges Gentil<sup>(1)</sup>

Engenheiro Sanitarista e Ambiental com pós-graduação em Engenharia de Segurança do Trabalho e Geoprocessamento na Gestão Ambiental. Integrante da Comissão Técnica de Redução de Perdas de Água da Companhia Águas de Joinville desde 2015 e atual presidente.

## Clarissa Campos Sá<sup>(2)</sup>

Engenheira Sanitarista e Ambiental com pós-graduação em Gestão de Projetos. Integrante, desde a criação, da Comissão Técnica de Redução de Perdas de Água da Companhia Águas de Joinville.

**Endereço**<sup>(1)</sup>: Rua Lindóia, 400 Bairro Glória – Cidade Joinville – Estado SC - CEP: 89216-300 – País Brasil - Tel: +55 (47) 98864-7656 - e-mail: <u>bruno.gentil@aguasdejoinville.com.br</u>.

#### **RESUMO**

Segundo o Instituto Trata Brasil (2019), o volume de perdas de um sistema de abastecimento de água é um fator chave na avaliação da eficiência das atividades comerciais e de distribuição de um operador de saneamento. Os recorrentes déficits hídricos em diferentes regiões do Brasil tornam ainda mais relevante a implementação de planos e ações eficientes focados no controle e redução das perdas de água.

Cidades com indicadores de perdas menores que 15% são referência no setor e segundo dados do Sistema Nacional de Informações sobre Saneamento (SNIS), de 2017, o índice médio de perdas na distribuição (IPD) nas cidades brasileiras era de 38,29%, valor este bastante distante dos padrões de excelência, mostrando que ainda existe um longo caminho a ser percorrido em busca da melhora deste indicador.

Em agosto de 2005, quando a Companhia Águas de Joinville (CAJ) assumiu a gestão do sistemas de abastecimento de água (SAA) do município, encontrou inúmeros problemas e dificuldades. Grande parte destes problemas foi ocasionada pela falta de informações cadastrais e de manutenções adequadas, principalmente nos últimos anos da antiga concessão, a partir de 2003, quando se iniciou o processo de municipalização.

A partir daí alguns esforços foram feitos para reduzir as perdas de água que influenciavam na continuidade do abastecimento e no baixo faturamento. A principal ação inicial da CAJ, foi a hidrometração de mais de 20 mil clientes em 2008, passando de 88% para 99% de clientes micromedidos, atingindo os 100% em fevereiro de 2012. Em 2010, com a elaboração do primeiro Plano Diretor de Redução e Controle de Perdas de Água, baseado na metodologia MASP\_PERDAS, os resultados começaram a ser melhor monitorados com o acompanhamento dos volumes produzidos/disponibilizados e volumes utilizados.

O objetivo do trabalho é apresentar os principais tópicos relacionados aos projetos e ações dos Planos e os resultados obtidos de 2015 até 2019, apresentar os principais desafios e projetos para os próximos 4 anos, com o planejamento e execução do Plano de Gestão de Perdas de Água e Energia de 2019, que foca na eficiência hidráulica e energética do sistema, buscando não só reduzir ainda mais os volumes perdidos como a redução das despesas de energia elétrica.

**PALAVRAS-CHAVE:** Perdas de água, Plano Diretor, Redução de Perdas, Volume Utilizado, Volume Disponibilizado.

### **INTRODUÇÃO**

O SAA de Joinville é atendido por duas Estações de Tratamento, ETA Cubatão e ETA Piraí, representando cerca de 74% e 26% respectivamente dos volumes disponibilizados e abastece mais de 590.466 habitantes, conforme estimativa do IBGE 2019.



Em todos os processos de abastecimento de água que utilizam redes de distribuição ocorrem perdas de água. Existem dois tipos de perdas: as chamadas perdas físicas ou reais que são as associadas aos vazamentos, visíveis ou não visíveis (ocultos); e as perdas comerciais ou aparentes, relativas à falta de micromedição (hidrômetros) ou demais erros de mediação, e as fraudes (ligações clandestinas e roubo de água).

Para cálculo e estimativa das perdas utiliza-se o Balanço Hídrico estabelecida pela IWA - Associação Internacional da Água, como é disposto conforme figura 1 a seguir:



Figura 1. Balanço Hídrico (IWA Associação Internacional da Água)

No SAA de Joinville, a Companhia adotou a metodologia do MASP\_PERDAS - Método de Análise e Soluções de Problemas aplicados a perdas de água, para a elaboração dos Planos Diretores de Redução e Controle de Perdas de Água.

O MASP utiliza o conceito do ciclo PDCA, buscando sempre atacar as causas dos problemas, as metas devem ser definidas a partir das bases do problema, ou seja, ao invés de metas para os índices de perdas deverá ser adotado metas para o volume disponibilizado ou produzido (VD) e para o volume utilizado (VU) que são os principais componentes do cálculo dos indicadores.

A Tabela 1 traz as informações resumidas de VU e VD conforme o período do Plano. Verifica-se que nos anos de 2012 e 2014 houveram aumentos significativos no VD, justificado devido à calibração dos macromedidores e a substituição, por macromedidores ultrassónicos intrusivos, na sequência dos mesmos

| Planos |                    | IPL inicial (L/lig.d) | VD (m³)    | VU (m³)    | Vperdas    | IPD (%) |  |  |
|--------|--------------------|-----------------------|------------|------------|------------|---------|--|--|
| 1      | 2010               | 485                   | 50.881.607 | 27.565.242 | 23.316.365 | 45,82%  |  |  |
| II     | 2012               | 660                   | 61.133.563 | 29.440.703 | 31.692.860 | 51,84%  |  |  |
| III    | 2012               | 603                   | 60.484.959 | 31.038.803 | 29.446.156 | 48,68%  |  |  |
| IV     | 2014               | 708                   | 67.529.355 | 32.753.522 | 34.775.833 | 51,50%  |  |  |
| V      | 2015               | 702                   | 65.536.011 | 32.243.580 | 33.292.431 | 50,80%  |  |  |
|        | 2016               | 632                   | 65.118.702 | 33.174.892 | 31.943.810 | 49,05%  |  |  |
|        | 2017               | 601                   | 64.654.240 | 33.882.956 | 30.771.284 | 47,59%  |  |  |
|        | 2018               | 571                   | 64.345.190 | 34.724.093 | 29.621.097 | 46,03%  |  |  |
| VI     | 2019               | 540                   | 65.013.994 | 36.169.085 | 28.844.909 | 44,37%  |  |  |
| VII    | 2020 Em elaboração |                       |            |            |            |         |  |  |

Tabela 1 – Resumo dos Planos de Redução de Perdas



Os Planos, ações e resultados são sempre monitorados e acompanhados através dos indicadores operacionais pela Comissão Técnica de Redução de Perdas de Água (CTRPA) formada pelos principais atores internos da CAJ, Gerentes e Coordenadores, responsáveis diretamente pela gestão do volume disponibilizado e pelo volume utilizado, reunindo profissionais das áreas de operação, supervisão, manutenção, projetos, obras e comercial.

A Tabela 2, a seguir, apresenta os indicadores operacionais acompanhados e monitorados em cada Plano. Os indicadores refletem as ações realizadas pelas equipes no SAA, reduzindo o volume disponibilizado pelas estações de tratamento e aumentando o volume micromedido nos clientes da CAJ.

Tabela 2 – Indicadores Operacionais e resultados obtidos (meta x realizado)

| Plano           | Indicadores Operacionais              |                                              |  |  |  |  |  |
|-----------------|---------------------------------------|----------------------------------------------|--|--|--|--|--|
|                 | Retiradas de Fraudes                  | Ligações Setorizadas                         |  |  |  |  |  |
| 3º Plano (2012) | Pesquisa de VNV                       | Idade Média do Parque de HD                  |  |  |  |  |  |
|                 | Tempo Médio de Reparo                 | Substituição de HD                           |  |  |  |  |  |
|                 | Quantidade Verificações de Fraudes    | Tempo Médio de Reparo                        |  |  |  |  |  |
|                 | Assertividade das Verificações        | Ligações Setorizadas                         |  |  |  |  |  |
| 4º Plano (2014) | Pesquisa de VNV                       | Ligações em DMC                              |  |  |  |  |  |
|                 | Assertividade da Pesquisa             | Ganho por Substituição de HD                 |  |  |  |  |  |
|                 | Tempo Médio de Reparo de VNV          | Substituição de HD                           |  |  |  |  |  |
| 1               | Quantidade Verificações de Fraudes    | Tempo Médio de Reparo                        |  |  |  |  |  |
|                 | Assertividade das Verificações        | Ligações Setorizadas                         |  |  |  |  |  |
| 5º Plano (2015) | Pesquisa de VNV                       | Ligações em DMC                              |  |  |  |  |  |
|                 | Assertividade da Pesquisa             | Ganho por Substituição de HD                 |  |  |  |  |  |
|                 | Tempo Médio de Reparo de VNV          | Substituição de HD                           |  |  |  |  |  |
| 6º Plano (2019) | Substituição de hidrômetros           | Índice de consumo de energia elétrica no SAA |  |  |  |  |  |
| 6 Flailo (2013) | Movimentação de hidrômetro.           | Operação em horário econômico                |  |  |  |  |  |
|                 | Ganho por substituição total          | Ph5 – Eficiência Energética Elevatórias      |  |  |  |  |  |
|                 | Qtd de irregularidades sanadas no ano | Multas Energia Elétrica                      |  |  |  |  |  |
|                 | Quantidade de VNVs consertados        | Unidades com excesso de demanda contratada   |  |  |  |  |  |
|                 | % de Re-serviços em consertos de Vaz. | Adequação da tarifa contratada               |  |  |  |  |  |
|                 | Tempo Médio Vazamentos Visíveis       | Baixo fator de potência                      |  |  |  |  |  |

Para auxiliar o acompanhamento e visualização dos indicadores a equipe utiliza um *dashboard* com os principais dados e informações do Sistema de Abastecimento e Ações de combate a perdas de água, como mostra a figura 2.

|                                          |                    | Figura 2                                          | 2 – Das             | shbo               | ard                | de In              | dica               | dore                | s CT               | RPA                |                    |                    |
|------------------------------------------|--------------------|---------------------------------------------------|---------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
|                                          |                    |                                                   |                     | ago/19             | set/19             | out/19             | nov/19             | dez/19              | jan/20             | fev/20             | mar/20             | abr/20             |
|                                          |                    |                                                   |                     |                    | 5.231.530          | 5.424.505          | 5.261.387          | 5.476.116           | 5.460.046          | 5.218.573          | 5.745.750          | 5.515.468          |
|                                          |                    |                                                   | 0,93%               | -0,91%             | 0,12%              | 1,11%              | -0,51%             | -2,10%              | 2,58%              | 2,06%              | 1,97%              |                    |
|                                          | Águas de Joinville |                                                   |                     | 2.984.797<br>6,01% | 2.945.985<br>1,29% | 2.998.240<br>5,68% | 3.097.844<br>5,13× | 3.010.392<br>-0,56% | 3.170.749<br>2,96% | 3.198.867<br>0,89× | 3.253.746<br>9,32× | 3.182.274<br>6,36× |
| Companhia Municipal de Saneamento Básico |                    |                                                   | 3.344.945<br>4.51%  | 3.317.077          | 3.340.644<br>3.85× | 3.427.835<br>3.99% | 3.364.142          | 3.510.982           | 3.514.434<br>0.53× | 3,559,735<br>6,68× | 3.483.109<br>4.22% |                    |
|                                          |                    |                                                   |                     | 153.015            | 153.308<br>1.65%   | 153,650<br>1,63%   | 153.897<br>1,67%   | 154.098<br>1,69×    | 154.081<br>1.60%   | 154.334<br>1.65%   | 154.563<br>1,67×   | 154.851            |
|                                          |                    | INDICADORES                                       | UNIDADE             | 227.111            | 227.567            | 227.963<br>2,32%   | 228.189            | 228.342             | 228.375<br>1,97×   | 228.672            | 229.206            | 229.512            |
|                                          |                    | Índice de Perda por Ligação                       | Litros /<br>Ligação | 525<br>531         | 522<br>528         | 517<br>524         | 514<br>522         | 511<br>521          | 519<br>517         | 516<br>517         | 515<br>513         | 513<br>511         |
| IUSIIIICIOUS                             |                    | Índice de Perdas de<br>Faturamento                | ×                   | 37,79×<br>38,55%   | 37,59×<br>38,43%   | 37,39×<br>38,24%   | 37,19×<br>38,10×   | 36,99×<br>38,07%    | 37,94×<br>37,84×   | 37,#0×<br>37,94%   | 37,69×<br>37,71%   | 37,57×<br>37,59%   |
| Siluiniais                               |                    | Índice de Ligações<br>Setorizadas                 | ×                   | 45,46%             | 45,36%             | 45,30%             | 45,31%             | 45,43%              | 45,44%             | 45,45%             | 45,58%             | 45,61%             |
|                                          |                    | Índice de Ligações em DMCs                        | ×                   | 39,59%             | 39,51%             | 39,51%             | 39,55%             | 39,62%              | 39,55%             | 39,42%             | 39,57%             | 39,60%             |
| 9                                        | 5                  | Quantidade de Irregularidades<br>Sanadas          | Unidade             | 1#3<br>284         | 1#3<br>391         | 1#3<br>396         | 1#3<br>301         | 163                 | 1#3<br>311         | 1#3<br>211         | 1#3<br>197         | 1#3<br>74          |
| an oppedin                               | 6                  | Incremento de Volume!<br>Volume Micromedido Anual | ×                   | 1,65z<br>1,79%     | 1,65±<br>1,89%     | 1,65×<br>1,87%     | 1,65±<br>1,87%     | 1,65×<br>1,69%      | 1,65±<br>1,80%     | 1,65±<br>1,63%     | 1,65±<br>1,43%     | 1,65×<br>1,17%     |
| ă I                                      | 6                  | Ganho de Volume por                               | M, \ HD             |                    |                    | 3                  | 34                 | 2                   | 3                  |                    |                    |                    |
|                                          | 7                  | Substituição de Hidrômetro                        | Hidrômetro<br>s     | 11.715             | 14.281             | 16.728             | 19.366             | 21.942              | 2.259              | 5.142              | 7.684              | 13.343             |
| 3                                        | 8                  | Índice de Pesquisa de<br>Vazamento Oculto         | км                  | 110                | 110                | 110                | 110<br>118,5       | 110                 | 110                | 106,9              | 110                | 110<br>87,8        |
| an nanadiii                              | 9                  | Quantidade de Yazamentos<br>Ocultos Executados    | Unidade             | 142                | 91                 | 100                | 53                 | 90                  | 100<br>62          | 100<br>45          | 95                 | 100<br>55          |
|                                          | 10                 | Tempo Médio de Conserto de<br>Vazamento           | Horas               | 10:00              | 10:00              | 10:00              | 10:00              | 10:00               | 10:00              | 10:00              | 10:00              | 10:00              |



#### RESULTADOS/DISCUSSÃO

Desde os primeiros Planos Diretores a Câmara Técnica de Redução de Perdas de Água da Companhia Águas de Joinville buscou monitorar e avaliar as ações de redução e controle de perdas através de indicadores operacionais. Os resultados são avaliados na redução de volume disponibilizado e no incremento de volume utilizado mensal, conforme preconiza os critérios da metodologia MASP\_PERDAS. Porém houveram erros nos volumes disponibilizados detectados em 2012 e 2014, distorcendo os resultados reais das ações.

O Gráfico 01 representa a redução do indicador de IPL (litros/ligação.dia) de 2015 a 2019 (período com VU e VD validados)

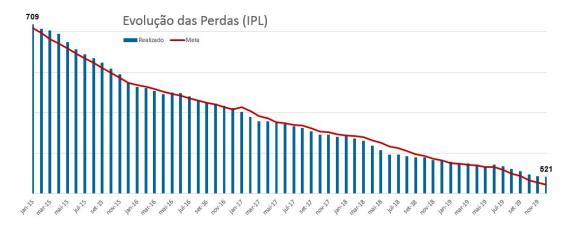



Gráfico 01 - Evolução das Perdas no Sistema de Abastecimento de Água de Joinville (IPL)

Em 2019 foi criada o Escritório de Gestão de Perdas e Eficiência Energética, formado por profissionais com experiência na gestão das perdas reais e comerciais e num novo tema incluído no Plano de 2016. Eficiência Energética.

Os desafios para os próximos anos é tornar o sistema de abastecimento de água de Joinville mais eficiente hidráulica e energeticamente e o Plano de Gestão de Perdas de Água e Energia determina, através dos Programas de Redução de Perdas Reais, Redução de Perdas Aparentes e de Eficiência Energética, com indicadores operacionais arrojadas, as metas para 2023.

#### **CONCLUSÃO**

Conclui-se que a implementação e execução de Planos Diretores de Redução de Perdas de Água em Joinville, monitorados e acompanhados através de indicadores operacionais de performance e que representem o incremento de VU e redução de VD; e com dados e informações realistas é possível contribuir para auxiliar que as concessionárias e operadoras de sistemas de água consigam reduzir e manter baixo seus indicadores de perdas, contribuindo para a preservação dos recursos hídricos e com a melhoria do abastecimento dos clientes.

Os desafios são grandes para os próximos anos, sabe-se que a redução de perdas depende de investimentos e de políticas organizacionais voltadas a este tema, mas a Companhia vem mostrado evolução nos indicadores e buscando investimentos para melhorar ainda mais seus índices de perdas.

### REFERÊNCIAS BIBLIOGRÁFICAS

1. CTRPA e CTEEN / CAJ – Comissão Técnica de Redução de Perdas de Água e de Eficiência Energética – Companhia Águas de Joinville. PLANOS DIRETOR DE REDUÇÃO E CONTROLE DE PERDAS DE ÁGUA. (2010 / 2012 / 2014 / 2015 / 2019)



- 2. GONÇALVES, E. Metodologias para Controle de Perdas em Sistemas de Distribuição de Água Estudo de Casos da CAESB. 1998. 173 f. Dissertação (Mestrado) Universidade de Brasília, Brasília, 1998.
- 3. IBGE Instituto Brasileiro de Geografia e Estatística. Unidades da Federação. Disponível em: <www.ibge.gov.br/cidadesat> . Acesso em: 2020.
- 4. MINISTÉRIO DAS CIDADES. Gestão Eficiente de Água e Energia Elétrica em Saneamento: Capacitação Técnica dos Prestadores de Serviço de Saneamento. Brasília, 2006. CD-ROM
- 5. MIRANDA, E. C. de. Avaliação de Perdas em Sistemas de Abastecimento de Água Indicadores de Perdas. 2002. 215 f. Dissertação (Mestrado) Universidade de Brasília, Brasília, 2002