

REAPROVEITAMENTO DO LODO PRODUZIDO EM ETES PARA RECICLÁ-LO E TRANSFORMÁ-LO EM ADUBO

Rodrigo Alves(1)

Pós-graduado em Química Ambiental e Engenharia de Controle de Poluição (2019) pelas Faculdades Oswaldo Cruz. Graduado em Engenharia Química (2014) nas Faculdades Oswaldo Cruz. Atuou como Técnico em Sistema de Saneamento de ETEs e EEEs da Região Metropolitana de São Paulo.

Atualmente atua como Encarregado de Operação do Sistema São Miguel da Diretoria Metropolitana da Companhia de Saneamento Básico do Estado de São Paulo – SABESP.

José Francisco de Albuquerque Filho⁽²⁾

Tecnólogo de Gestão Ambiental (2022) pela Universidade Paulista. Professor de Inglês a mais de 12 anos com atuação no mercado corporativo. Desenvolvedor de equipamentos voltados a solução tecnológica dos passivos ambientais de RSU (Resíduos Sólidos Urbanos), com ênfase em máquina de compostagem e pirólise rápida a 500°C sem a adição de materiais clorados. Atualmente está em processo de finalização da Iniciação Científica e Tecnológica pela UNIP, com foco em máquina eletrônica de compostagem.

Endereço⁽¹⁾: Rua Antônio La Giudice, 972 – Jardim Aricanduva – São Paulo - SP - CEP: 03454-000 - Brasil - Tel: +55 (11) 99570-9013 - e-mail: rodrigoalves@sabesp.com.br

RESUMO

O esgoto, efluente ou águas servidas são os resíduos líquidos domésticos e indústrias que necessitam de tratamento adequado para que sejam removidas as impurezas através de processos físicos, químicos ou biológicos. Após esses processos, o efluente pode ser devolvido aos mananciais, com bom grau de pureza, em conformidade com os padrões exigidos pela legislação ambiental, sem causar danos ambientais e à saúde humana (CAESB, 2020). O tratamento é realizado nas Estações de Tratamento de Esgoto (ETEs), que operam com diferentes sistemas tecnológicos, e consequentemente ocorre a geração de um resíduo semissólido, pastoso e de natureza predominantemente orgânica, chamado de lodo de esgoto. Além do mais, esse resíduo possui uma composição muito variável, pois depende da origem do esgoto, do processo de tratamento e do seu caráter sazonal (EMBRAPA, 2018).

Além de toda a problemática econômica para as empresas de saneamento, tem-se outro fator muito relevante, uma vez que quando o resíduo orgânico não tratado é encaminhado para os aterros sanitários, tem-se a diminuição da vida útil destes, além da geração do gás metano, nocivo à atmosfera.

Neste trabalho veremos a cooperação técnica entre companhias com o objetivo de verificar o reaproveitamento do lodo produzido em ETEs

PALAVRAS-CHAVE: compostagem, lodo, resíduo

INTRODUÇÃO

As práticas de minimização da produção de rejeitos têm sido estimuladas, priorizando a reciclagem como opção de destino final. Por esta razão, o uso do lodo de esgoto na agricultura vem se tornando uma alternativa de grande interesse, uma vez que fornece matéria orgânica e nutrientes ao solo. Entretanto, os lodos de ETEs correspondem a uma fonte potencial de riscos à saúde pública e ao ambiente, já que permitem e potencializam a proliferação de vetores de doenças e organismos nocivos. Dessa forma, é necessário realizar o processo de higienização do lodo e a devida análise, para que este possa ser utilizado na agricultura.

O processo de compostagem viabiliza o uso do lodo de esgoto na agricultura, visto que permite eliminar e/ou diminuir os patógenos, alterar o pH e as grandezas químicas e físicas (RIBEIRO, 2018).

A compostagem, em comparação com outras metodologias de tratamento, é um processo barato, o qual resulta em um composto quimicamente estável, uniforme, inodoro com teores elevados de matéria orgânica e de nutrientes necessários para fins agrícolas (CORRÊA, 2001). Entretanto, é um processo que varia de 60 a 120 dias, já que é totalmente dependente da proporção entre matéria seca e lodo, umidade, temperatura e o tipo do lodo de esgoto. Por essas razões tem-se a grande necessidade para a utilização do reator de compostagem, com a finalidade de manter constância em todas as variáveis e consequentemente, diminuir o tempo do processo de compostagem.

Baseado na economia circular esse trabalho demonstra um estudo de caso realizado em uma ETE adotando um equipamento acelerado de compostagem.

OBJETIVOS

Por conseguinte, foram definidos 5 objetivos para serem fundamentadas após os testes com o equipamento que realiza a compostagem acelerada na ETE, foram definidos abaixo:

- Verificar a redução do volume/peso do composto orgânico após a realização da compostagem
- Confirmar qual proporção da mistura entre a matéria seca e o lodo de esgoto é a mais adequada;
- Realizar análises químicas, físicas e biológicas do composto orgânico produzido em um laboratório certificado;
- Avaliar a relação entre a concentração de coliformes termotolerantes e metais pesados após o processo de compostagem;
- Produzir, regulamentar e classificar o composto orgânico conforme os parâmetros do Conselho Nacional do Meio Ambiente (CONAMA) e Ministério da Agricultura Pecuária e Abastecimento (MAPA).

O projeto de cooperação entre empresas consiste em realizar o estudo de viabilidade comercial e de disposição do lodo de esgoto. Na figura 1, é demonstrado um resumo do processo de compostagem.

Figura 1 - Fluxograma de entradas e saídas do processo de compostagem. Fonte: (PROSAB,1996)

METODOLOGIA UTILIZADA

Foram realizados dois ensaios, assim, o primeiro ensaio foi feito com a utilização dos materiais e processos básicos (lodo de esgoto, serragem e bicarbonato), enquanto que no segundo ensaio ocorreu uma revisão e aprimoramento a partir da inserção de material específico para ampliação da biota e material para remediação de metais pesados através de adsorção para uma possível melhora da qualidade do composto finalizado. Isto posto, os ensaios podem ser divididos em etapas de preparação:

1- Instalação do equipamento;

- 2- Inserção do Lodo de esgoto;
- 3- Adição de uma proporção de biomassa;
- 4- Adição de uma porção de material para remediação dos metais pesados;
- 5- Fechamento da tampa;
- 6- O sistema executa, através de programação durante 24/7, a aeração, a movimentação para a homogeneização e o aquecimento do composto;
- 7- Seis dias de inserção consecutivas;
- 8- Sétimo dia não haverá inserção de material, para a elaboração final do processo;
- 9- No início do próximo processo, haverá a abertura da válvula de saída localizada na parte inferior e o acionamento da movimentação de massa para retirada do volume em caixa adequada;
- 10- Não haverá necessidade de limpeza interna do corpo de trabalho, visto que a utilização da fração restante do processo de descarregar sendo esta fração utilizada para o desenvolvimento de nova cultura de microrganismos em um novo processo.

Os testes foram efetuados na própria ETE, em dezembro de 2.021. A tabela 1 abaixo é demonstrado o passo-apasso das atividades discriminadas acima.

Tabela 1 – Atividades realizadas no teste

Dias	Data	Atividade	Produto		
		Teste 01			
		Pesagem			
		Adição de Lodo			
	a stratages	Adição de Matéria Seca			
Dia 01 ao Dia 05	06/12/2021 a 10/12/2021	Adição de Bicarbonato	Amostra Lodo		
		Verificação do Composto			
		Oxigenação do Composto			
		Mistura e Descanso do Composto			
Dia 06	11/12/2021	Oxigenação do Composto			
Dia 06	11/12/2021	Mistura e Descanso do Composto			
	12/12/2021	A .	Amostra da Água		
Dia 07		Retirada do composto do equipamento	Amostra do composto		
		b. //	Adubo pronto para uso		
		Teste 02	Adubo pronto para uso		
		Pesagem	/		
		Adição de Lodo			
		Adição de Matéria Seca			
		Adição de Bicarbonato	8		
		Adição de Açúcar			
Dia 01 ao Dia 05	13/12/2021 a 17/12/2021	Adição de Bentonita	Amostra Lodo		
		Adição de Zeolita ZS			
		Adição de Zeolita ZZ			
		Verificação do Composto			
		Oxigenação do Composto			
		Mistura e Descanso do Composto			
Dia 06	18/12/2021	Oxigenação do Composto			
	18/12/2021	Mistura e Descanso do Composto			
	19/12/2021		Amostra da Água		
Dia 07		Retirada do composto do equipamento	Amostra do composto		
			Adubo pronto para uso		

Além da utilização da matéria seca para o processo de compostagem tem-se a necessidade da adição de alguns componentes como é o caso do bircarbonato com a finalidade de regularizar o pH, do açúcar que é um nutriente para fungos e bactérias e auxilia no desenvolvimento da biota presente no composto, da bentonita e da zeolita, as quais auxiliam na remediação dos metais pesados. Para a realização do processo de compostagem tem-se os seguintes valores de referência: para cada 50 kg/dia do lodo de esgoto, é necessário adicionar proporcionalmente 20% (em média 10 kg) de serragem e 0,33 kg de bicarbonato.

O equipamento foi instalado ao lado da região de deposição da torta de lodo de esgoto na ETE, conforme

fotografia 2, abaixo:

Fotografia 2 - Localização do equipamento na ETE

Na fotografia 3, é observado o lodo desaguado da ETE (torta) que é a fonte do processo de compostagem. Assim, de acordo com o resultado da análise do lodo de esgoto antes do processo de compostagem já possuía umidade de 74,3%.

Fotografia 03 - Torta do processo de desaguamento do lodo

Desta forma, foi executado o teste 01 com a utilização da massa de lodo de esgoto compatível com os cálculos da redução de volume do composto orgânico para avaliação de processo de compostagem com a adição de biomassa e o controle de pH. Na Tabela 2 são apresentados os pesos diários dos itens inseridos no dispositivo. Logo, são apresentados os dados da inserção dos 5 dias consecutivos.

Tabela 2 - Pesagem dos componentes adicionados no equipamento para o teste 01

Teste 01	Data	Massa de lodo (kg)	Biomassa (kg)	Outro	Total	
Dia 01	06/12/2021	45,73	3,16			
Dia 02	07/12/2021	53,46	12,56	- / - / -		
Dia 03	08/12/2021	27,78	5,19	-		
Dia 04	09/12/2021	21,27	7,23	-		
Dia 05	10/12/2021	22,72	13,54			
Dia 06	11/12/2021	_	121	% <u>~</u>		
Dia 07	12/12/2021	-	-	-		
Total	-	170,96	41,68	0		
Total inserido						
Total pesado após secagem						

Na Tabela 3 é apresentado os dados de pesagem do teste 02.

Tabela 3 - Pesagem dos componentes adicionados no equipamento para o teste 02

	Tubelle of Tesagem and componentes auteronianos no equipamento para o teste oz								
Teste 02	Data	Massa de lodo (kg)	Biomassa (kg)	Açúcar (kg)	Bicarbonato (kg)	Bentonita (kg)	Zeolita ZS (kg)	Zeolita ZZ (kg)	Total
Dia 01	13/12/2021	23,7	10,29	0	0				
Dia 02	14/12/2021	21,56	0	0	1,23				
Dia 03	15/12/2021	22,03	0	0,8	0				
Dia 04	16/12/2021	19,8	5,1	0	0				
			Retomada d	lo teste a _l	oós interrupção	0			
Dia 05	06/02/2022	20	4,5	0	0				
Dia 06	07/02/2022	21	5,3	0	0				
Dia 07	08/02/2022	7	-	-	-				
Total	-	128,09	25,19	0,8	1,23	5	1	1	
Total ins	Total inserido								162,31

O segundo teste foi finalizado a partir do dia 06/02/2022 e assim foram adicionados ao composto orgânico produzido até o dia 16/12/2021 os seguintes componentes: bentonita e zeolitas ZZ e ZN na proporção 1:2:2. Após a finalização do teste foi possível notar uma diferença de coloração do material processado, presença de odor, umidade relativa, uma massa mais solta, mas ainda apresentado viscosidade e a necessidade das análises para uma maior avaliação e comparação com o primeiro teste.

RESULTADOS OBTIDOS

Após a retirada do equipamento o composto mudou de coloração e textura, além de que apresentou redução de 11% em relação a inserção da torta de lodo, a qual já estava compactada. Foi possível calcular a redução a partir da soma do peso dos itens adicionados (lodo, matéria seca, bicarbonato, etc.) em comparação com o peso do composto final produzido no equipamento.

Deve-se analisar que a massa do resíduo orgânico é composta em média de 60 a 70% de umidade. Logo, mesmo com o processamento para a redução de volume, a partir da utilização de um triturador industrial, ainda haveria a quantidade de água no material.

Assim, assume-se que o mesmo acontecia com o lodo de esgoto. Com base na figura 4, após o material final ficar disposto para maturação ocorreu o surgimento de fungos, o que favorece na melhora da estrutura do solo, textura e aeração além do sequestro de Pb (chumbo).

Figura 4 - Adubo orgânico produzido após o processo de compostagem

No processo natural de compostagem ocorre o aumento de temperatura que causa a transformação da água líquida contida no composto em vapor, o material é aerado constantemente e com a saída do ar do corpo da máquina há uma diferença de temperatura em que ocorre a condensação das moléculas de H₂O e assim tem-se a destinação de água do equipamento para um reservatório, o ar continua o caminho através de um filtro de carvão ativado eliminando qualquer odor, o reservatório é demostrado na primeira imagem da Figura 5.

Figura 5 – (1) Antes da adição e (2) 30 dias após

ANÁLISE E DISCUSSÃO DOS RESULTADOS

Foram enviadas amostras para um laboratório externo (acreditado), com a finalidade de analisar a composição física, química e biológica do adubo orgânico formado após o processo de compostagem, em conformidade com as legislações existentes. Vale ressaltar que todos os resultados obtidos foram para o teste 01.

Tabela 4 - Comparação dos resultados químicos obtidos com a IN 61/2020 (MAPA)

Tipos	Símbolo	Elemento	Teor Mínimo (%)	Resultado (%)	
	N	Nitrogênio	1	2,19	
Macronutrientes Primários	P ou P2O5	Fósforo	1	1,84	
	K ou K2O	Potássio	1	0,11	
V	Ca	Cálcio	1	1,19	
Macronutrientes Secundários	Mg	Magnésio	1	0,15	
4	S	Enxofre	1	0,725319	
	В	Boro	0,01	0,05	
	Cl	Cloro	0,1	0,892897	
	Со	Cobalto	0,005	0	
	Cu	Cobre	0,02	0,032536	
	Fe	Ferro	0,02	2,866183	
Micronutrientes	Mn	Manganês	0,02	0,016064	
	Мо	Molibidênio	0,005	0	
	Ni	Níquel	0,005	0,009	
	Se	Selênio	0,003	0,0001	
	Sí	Silício	0,05	-	
	Zn	Zinco	0,1	0,075131	

Além do mais, foi averiguado que a amostra enviada para o laboratório possui < 1 ovo viável de helminto por g/ST, logo os parâmetros de controle operacional do processo de tratamento podem ser utilizados como indicadores da produção de biossólido classe A, conforme descrito na resolução nº 498/2020 (CONAMA). Na Tabela 5 é apresentada a comparação da quantidade de metais pesados que estão presentes na torta de lodo e após o processo de compostagem. Além do mais, esses resultados são comparados a Resolução nº 498/2020 (CONAMA).

Tabela 5 - Comparação dos resultados Químicos obtidos com a Resolução nº 498/2020 (CONAMA)

		Teores Máximo	s (mg/kg^-1 ST)	Resultados		
Símbolo	Elemento	Classe I	Classe II	Lodo de Esgoto	Lodo de Esgoto Compostado	
As	Arsênio	41	75	<0,005	< 0,3	
Ba	Bário	1300	1300	0,014	-	
Cd	Cádmio	39	85	0,046	1,1	
Pb	Chumbo	300	840	0,005	49,77	
Cu	Cobre	1500	4300	0,2	325,36	
Cr	Cromo	1000	3000	0,0592	<0,6	
Hg	Mercúrio	17	57	<0,0002	<0,1	
Мо	Molibdênio	50	75	<0,05	0	
Ni	Níquel	420	420	0,6	95,74	
Se	Selênio	36	100	<0,0008	< 1,0	
Zn	Zinco	2800	7500	0,37	751.31	

Atualmente, a maior empresa de comércio e produção de compostagem do lodo de esgoto junto a resíduos sólidos orgânicos industriais e agroindustriais fica localizada na cidade de Jundiaí (SP). Consequentemente, a empresa disponibiliza os dados químicos e físicos do adubo orgânico produzido e comercializado. A partir da

Tabela 6 é possível visualizar os dados da empresa de 2019 a 2020 em comparação com o adubo orgânico produzido no teste 01.

Tabela 6 - Comparação dos resultados disponíveis da empresa da cidade de Jundiaí e o teste 01

Determinações	20	19	2020						Teste 01	
Determinações	11	12	1	2	3	4	5	6	7	Resultado
pH	7,9	7,9	7,6	8,0	8,0	7,4	7,3	7,3	8,1	8,10
Umidade(%)	31,3	36,8	32,3	38,2	37,3	41,0	33,6	31,5	38,8	48,35
C-total (%)	16,7	21,8	20,5	18,7	17,9	14,8	13,1	14,3	18,8	34,62
N -total (%)	2,0	1,5	1,4	1,4	1,7	1,9	1,7	1,4	1,7	2,90
P2O5 -total (%)	2,5	2,1	2,5	2,6	2,7	3,1	3,8	2,6	4,1	1,84
K2O -total (%)	1,0	1,0	1,0	1,4	1,3	1,1	1,2	0,9	1,2	0,11
Ca -total (%)	6,3	5,8	4,8	4,5	7,8	4,5	4,5	5,8	6,4	1,19
Mg -total (%)	1,6	1,1	0,8	0,9	1,0	1,4	1,2	1,4	1,3	0,15
S - total (%)	0,7	1,1	0,7	1,0	0,9	1,3	1,7	1,0	1,0	0,73
C/N	8,0	14,0	14,0	13,0	10,0	8,0	8,0	10,0	11,0	16,00
B - total (mg/kg)	18,0	8,0	9,0	21,0	20,0	22,0	-	21,0	22,0	500,0
Cu - total (mg/kg)	319,0	225,0	328,0	361,0	314,0	263,0	255,0	275,0	326,0	325,36
Mo - total (mg/kg)	6,3	8,3	8,9	6,5	6,1	6,2	6,8	8,2	4,4	0,00
Zn - total (mg/kg)	507,0	1930,0	939,0	1070,0	885,0	1000,0	766,0	791,0	1220,0	751,31
CTC (mmol/kg)	260,0	330,0	380,0	390,0	720,0	-		870,0	360,0	235,00
CRA (%)	76,0	117,0	68,0	98,0	82,0		-	72,0	94,0	~

CONCLUSÕES/RECOMENDAÇÕES

Com base nos exames laboratoriais apresentados para o teste 01, foi verificado que a matéria orgânica (MO) do lodo de esgoto sofreu a ação dos microrganismos termofilicos promovendo assim a compostagem, uma vez que os parâmetros de umidade, pH, quantidade de patógenos (<1 g/ST), porcentagem de carbono e nitrogênio, comprovam tal fato. Entretanto, esse teste não considerou a remediação dos metais pesados, mas resultou em um material sem odor peculiar e com a secagem tornou-se uma massa rígida e em torrões.

Além do mais, o adubo produzido com base no ensaio patogênico e no ensaio de insumos (Tabela 4 e Tabela 5), conforme as normativas n° 61/2020 (MAPA) e 498°/2020 (CONAMA), necessita de algumas complementações, como a adição de potássio e magnésio para ser aprovado. Entretanto, esses itens podem ser remediados com a adição de outros componentes durante o processo de compostagem.

Portanto, foi averiguado que o equipamento consegue realizar a compostagem do lodo de esgoto com a adição de matéria seca (serragem) e aditivos reguladores de pH (bicarbonato) de forma adequada. Logo, posteriormente com algumas correções esse composto pode ser destinado/comercializado para agricultura.

A partir dos resultados recebidos do lodo de esgoto produzido na ETE é possível determinar que o composto orgânico produzido a partir desse lodo será classificado como Classe A, visto que essa distinção ocorre pela quantidade de Coliformes Termotolerantes e a quantidade desses patógenos estão inferiores da referência apresentada na Resolução nº498/2020 (CONAMA).

Antes do processo de compostagem a torta possuía 74,3% de umidade e depois o composto passou a ter 48,35%. Logo obteve-se uma redução de 25,95% da umidade e 10% no volume. Para o teste de patógenos apenas foi avaliada a quantidade de ovos de helmintos. Porém, de acordo com o resultado da torta de esgoto verifica-se a ausência de coliformes termotolerantes (2,4.10⁻⁴), Salmonella sp e ovos viáveis de helmintos (<0,25). Conforme a resolução nº 498/2020 o composto pode ser classificado como classe A e classe I. Já para aprovação do composto para aplicação na agricultura conforme a IN nº 61/2020 ainda devem ser adicionados alguns elementos químicos.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ADASA. Nota Técnica Nº 21/2020. Agência Reguladora de Águas, Energia e Saneamento do Distrito Federal. Distrito Federal. 2020.
- 2. BATISTA, L. Lodos gerados nas estações de tratamento de esgotos no Distrito Federal: Um estudo de sua aptidão para o condicionamento, utilização e disposição final. [S.l.]. 2015.
- 3. CAESB. Estações de Tratamento de Esgoto. Companhia de Saneamento Ambiental, 2020. Disponível em: https://www.caesb.df.gov.br/esgoto/sistemas-de-esgotamento.html. Acesso em: 06 abril 2022.
- CAESB. Estações de Tratamento de Esgoto. Companhia de Saneamento Ambiental do Distrito, 2021.
 Disponível
 https://atlascaesb.maps.arcgis.com/apps/MapJournal/index.html?appid=9babae05a8a1444180cdf3df83f67fb7>. Acesso em: 06 abril 2022.
- 5. CONAB. Boletim Logístico. Companhia Brasileira de Abastecimento. Brasília, p. 17. 2021.
- 6. CORRÊA, R. S. Valoração de Biossólidos como Fertilizantes e condicionadores de solos. SANARE, Revista Técnica da SANEPAR, Curitiba, v. 16, n. 2, p. 49-56, 2001. ISSN 01047175.
- EMBRAPA. Lodo de esgoto é ótimo componente de substratos para plantas. Empresa Brasileira de Pesquisa Agropecuária, 2018. Disponível em: https://www.embrapa.br/buscade-noticias/noticia/32485890/lodo-de-esgoto-e-otimo-componente-de-substratospara-plantas. Acesso em: 06 abril 2022.
- 8. IBGE. Censo. Instituto Brasileiro de Geografia e Estatística. [S.l.]. 2010.
- 9. PEDROZA, M. M. et al. Produção e tratamento de lodo uma revisão. Revista Liberato, Novo Hamburgo, v. 11, n. 16, p. 89-XX, 2010.
- 10. RIBEIRO, L. C. Compostagem de Lodo de Esgoto: Caracterização e Bi estabilização. Universidade Estadual Paulista Faculdade de Ciência Agronômicas. Botucatu, p. 93. 2018.
- 11. ROSA, S. De problema a solução ambiental. UNESPCIÊNCIA, 2018. Disponível em: http://unespciencia.com.br/2018/10/31/lodo-101/. Acesso em: 06 abril 2022.
- 12. SAE-PR. Produção Nacional de Fertilizantes. Secretaria Especial de Assuntos Estratégicos. [S.l.], p. 26. 2020.
- 13. SANIS. Diagnóstico do Manejo de Resíduos Sólidos Urbanos. Sistema Nacional. [S.l.]. 2019.
- 14. SMITH, M. Brasil importa 85% dos fertilizantes usados na agricultura. Folha de São Paulo, 24 abril 2021. Disponível em: https://www1.folha.uol.com.br/seminariosfolha/2021/05/brasil-importa-85-dosfertilizantes-. Acesso em: 06 abril 2022.