

34 ETC - 06374
WETLAND FRANCÊS: UM COMPONENTE PROMISSOR NO
CAMINHO PARA A UNIVERSALIZAÇÃO DO SANEAMENTO
- EXPERIÊNCIAS DE LONGO PRAZO

Dra. Heike Hoffmann – contato: heike@rotaria.net Rosa M. Miglio Toledo*, Christoph Platzer, Camila Haiml Rotaria do Brasil Ldta. e *Universidad Agraria La Molina, Lima, Peru

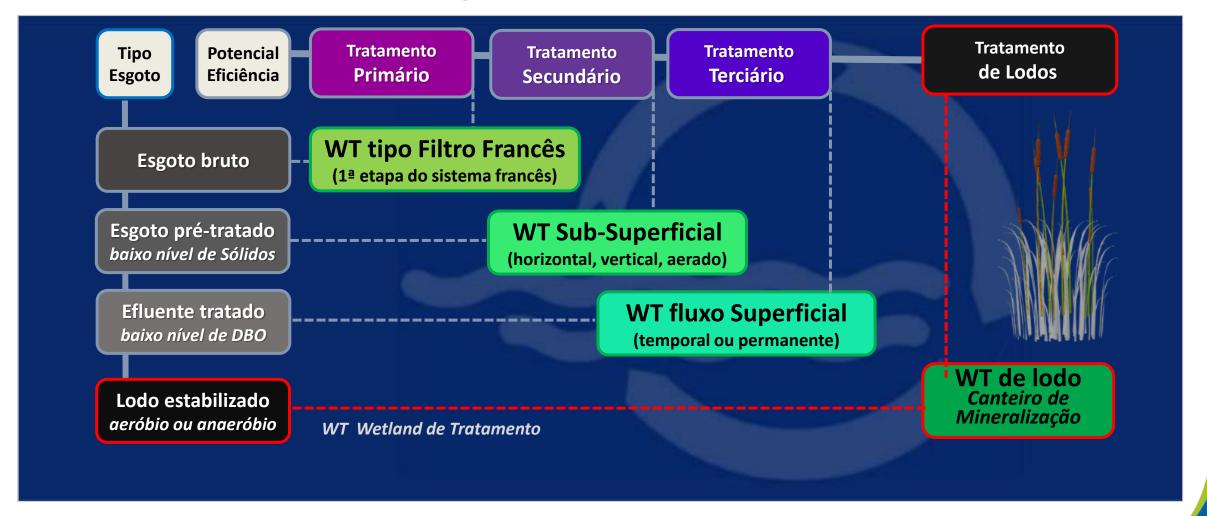
O poder do "Wetland Francês" na resposta aos desafios atuais no Brasil

- 1. Conceito por trás do "Wetland Francês" e a adaptação ao clima quente ("tropicalização")
 - O conceito clássico transformou o paradigma do saneamento em pequenas comunidades na França desde os anos 90, sua adaptação às condições climáticas quentes (desde 2010) oferece ainda mais vantagens
- 2. Resultados de 2 sistemas instalados pela Rotária no Peru (2011 e 2015) e estudadas pela UNALM Mostrando que no clima quente o primeiro Estágio como "Filtro Francês" atende plenamente aos requisitos de saneamento básico e a combinação com um segundo Estágio pode atender aos requisitos de reúso
- 3. Potencial para o Brasil com foco em ETEs com capacidade de até 30 L/s (< 15.000 habitantes)

 Análise comparativa econômica e operacional em comparação com tecnologias comuns;

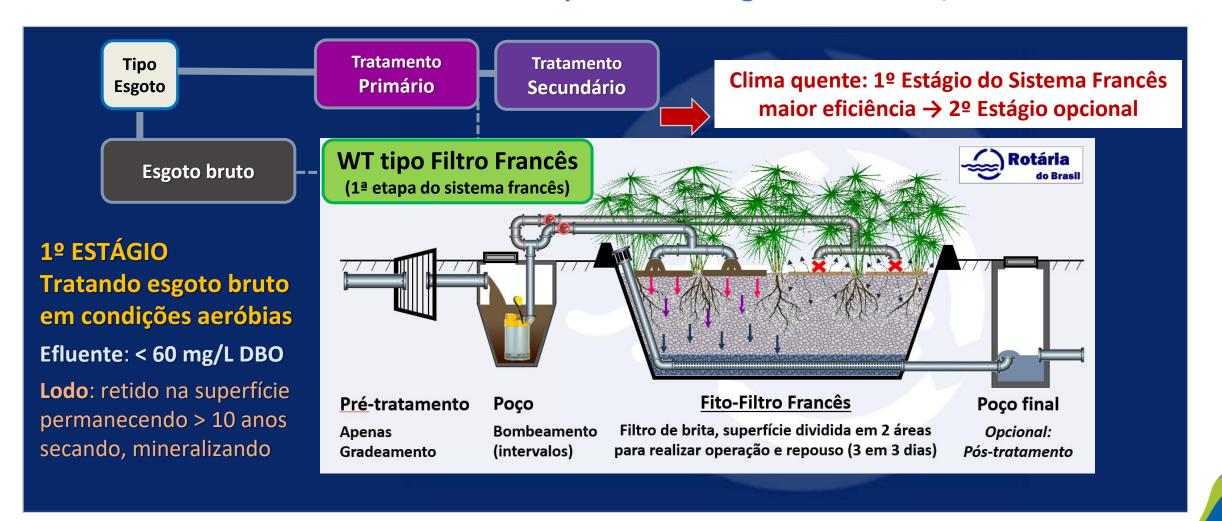
 Conclusões para o potencial de contribuição para a Universalização do Saneamento.

Parceira do consórcio GWT



O conceito clássico do Wetland tipo "Sistema Francês": Descobrindo a origem do nome

França: 3.000 'sistemas franceses' implementados como ETEs municipais desde os anos 90 Nègrepelisse (2009) Municipal WWTP 6.000 HE / Veolia



Panorama de tecnologias de Wetland com potencial para aplicações em escala e seu lugar na cadeia de tratamento

O diferencial do 'Filtro Francês' como o primeiro estágio do Wetland/Sistema Francês

Design de Wetlands e Sistema Francês - Documentação de Experiências

Clima quente: (1) P. Molle, IRSTEA no Caribe, (2) Von Sperling, UFMG no Brasil e (3) R. Miglio, UNALM; Lima, Peru - pesquisaram e aprovaram desde 2012 a alta eficiência do 1º Estágio do Sistema Francês:

- Recomendam 2 em vez de 3 compartimentos (1/3 menos área 0,8 : 1,2 m²/habitante)
- Por causa da maior eficiência aprovam 1º Estágio como suficiente para maioria das aplicações: Efluente: 80% DBO e SST (< 60 mg DBO/L), 75% DQO (< 125 mg DQO/L) e 60% Nitrificação</p>
- Para melhores resultados sem usar 2º Estágio Molle/IRSTEA aprova: recirculação de efluente tratado (respeitando a raxa hidráulica máxima de 0,75 m/d para área ativa / 0,375 m/d para área total)

2. Estudos de Caso: Wetlands Sistema Francês instalados pela Rotária e pesquisados pela UNALM no Peru

Caso 1: Chincha, Peru - Sistema Francês de 2 etapas, operado desde 2011 / 70 HE

2. Estudos de Caso: Wetlands Sistema Francês instalados pela Rotária e pesquisados pela UNALM no Peru

Caso 2: Sistema Modular de 2 estágios UNALM, Lima, Peru - operado desde 2015

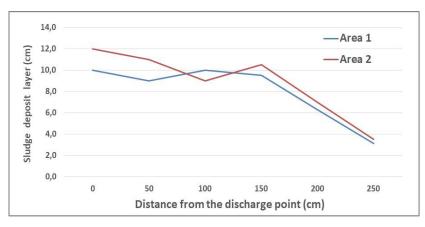
2. Resultados de Wetland Francês pesquisados com a UNALM/Peru

CASO 1: Chincha, Peru – Resultados do 1º Estágio e 2º Estágio entre 2013 e 2020

ETE CHINCHA		DQO	DBO ₅	Turbd.	SS	P _{total}	NH ₄ -N	NO ₃ -N	O	vos H	elmi	ıtos (C	OH)	Bactérias colif.
Amostra mensal	N^o	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	N^o	1	Nº ov	os/1L		NMP/100 ml
2013 esgoto bruto	2	934	343	269		7,9	23,0	/	5					4,26E+07
Fito Filtro efluente	3	75	23	7,5		5,5	5,7	10,6	3		0	60	0	5,10E+06
WFV efluente	4	17	4	0,3		4,4	0	8,4	3		0	0	0	9,40E+03
2020 esgoto bruto	6	377	245	195	195	4, 7	25,3	1	4	370	40	120	50	6,30E+07
Fito Filtro efluente	6	78	29	21,3	12,6	4,7	2,2	7,9	4	0	0	0	30	2,40E+07
WFV efluente	6	6,3	2,2	0,9	0,9	3,7	0	4,4	4	0	0	0	0	6,40E+03

UNALM, Peru - Resultados do 1º Estágio e 2º Estágios vertical e horizontal, ensaios de 2021

ETE UNALM 2019		DQO	DBO ₅	Turbd.	SS	P _{total}	NH ₄ -N	NO ₃ -N		Ovos Helmintos	Bacterias colif.
Amostra semanal	N^o	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	N^o	N° ovos/1L	NMP/100 ml
Esgoto bruto	12	710	368	450	690	4,7	42,9		12	20 - 120 ovos/amostra	3,33E+07
Fito Filtro	12	69	19	20	17	4,0	16,8	5,1	12	l _{amostra} com 7 ovos	3,75E+06
WFV efluente	12	48	4,9	4,6	1,9	0,6	0,4	7,8	24	0	2,04E+04
WFH efluente	12	53	7,5	5,3	3,1	0,7	16,4	2,0	12	0	4,45E+05



2. Resultados de Wetland Francês pesquisados com a UNALM/Peru

Chincha – Resultados de acumulação do lodo na superfície do 1º Estágio entre 2013 e 2020

Camada de depósito de lodo seco no Filtro Francês atingiu uma **média de 0,7 cm de crescimento por ano** - menos do que relatado por outros autores (1-1,5 cm):

- Carga relativamente baixa (0,25 m/dia)
- Condições climáticas extremamente secas

A umidade do sólido variava entre 25 a 40%

Relação entre **Sólidos Totais (SST) e Sólidos Voláteis (SSV) inferior a 30%**

Com base na carga atual, a borda livre de 20 cm ainda permite mais 15 anos de operação antes que a remoção da camada de lodo se torne relevante

2. Resultados de Wetland Francês pesquisados com a UNALM/Peru

Conclusões para o 1º ESTÁGIO/Filtro Francês (condições costa Peruana)

- Efluente tratado com alta eficiência (< 40 mg DBO/L, < 20 mg SS/L), atendendo plenamente à CONAMA 430/2011
- Operação robusta, simples, econômica, 10 anos sem necessidade de intervenções exigentes.
- O lodo retido na superfície mineraliza de forma eficiente, permitindo permanência de até 20 anos, sem provocar custos adicionais para o gerenciamento, sem gerar cheiro sem riscos.
- O efluente não atende aos padrões de reúso (OMS, 2006). Os ovos de helmintos nem sempre são eliminados e as bactérias coliformes permanecem em concentrações altas (10⁶-10⁷).

Conclusões para o 2º ESTÁGIO (como tratamento opcional)

- O pós-tratamento do efluente de Filtro Francês no wetland vertical (WV) e horizontal (WH) chega a altíssima eficiências (10 mg de DBO/L, 10 mg de SST/L, Turbidez de 6 NTU).
- O WH tem ligeiramente menor eficiência que o WV; por outro lado o WH mantem mais nitrogênio amoniacal que pode servir para ferti-irrigação.
- Ambos efluentes atendem às diretrizes da OMS para irrigação restrita (elimina os Ovos de Helmintos).
- Para a irrigação sem restrições, ambos os efluentes requerem a desinfecção final. A excelente qualidade dos efluentes permite a aplicação de qualquer tecnologia adicional de desinfecção.

3. Potencial do Sistema Francês para contribuir para a Universalização do Saneamento no Brasil

ANA, Brasil 2017: Atlas do Esgoto,

Despoluição de bacias geográficas, Índices de cobertura de esgoto

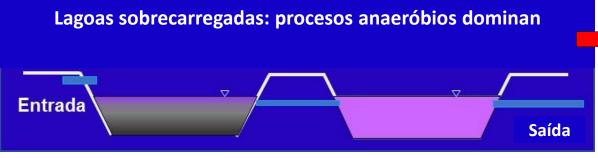
Novas ETEs: Maioria dos novos investimentos para ETEs de médio a pequeno porte – 80% de 5.570 munícipios < 30.000 hab.

1.291 munícipios devem atender > 80% remoção de DBO (potencial de ETE existentes: 74%).
2.244 munícipios devem remover P e/ou N

<u>Situação hídrica-ambiental-social</u>: exige <u>implementar</u> novos conceitos.

Com o horizonte de 2030 (universalização): ETEs descentralizadas cumprindo objetivos de reúso de efluentes devem ter um papel maior

A alta demanda por ETEs de menor porte coloca o Brasil diante de uma nova realidade que não pode ser atendida escalando tecnologias que se mostraram eficazes em ETEs de porte maior. O Sistema Francês apresenta uma das chaves para atender a essa demanda e tornar a universalização de saneamento viável e sustentável.


Potencial do Sistema Francês para contribuir para a Universalização do Saneamento no Brasil

Lagoas sobrecarregadas, saturadas ou novas Transformar a 1ª Lagoa em "Filtro Francês"

- Comparada com sistema de lagoa: capacidade (carga) maior e eficiência mais alta.
- Mantêm as caraterísticas de sistema de lagoas em absorver cargas variadas para custo operacional baixo.
- O lodo retido se transforma em composto/húmus seco e se pode retirar (cada 15 anos) sem desativar todo o tratamento.

Potencial do Sistema Francês para contribuir para a Universalização do Saneamento no Brasil

Exemplo: ETE nova para 10.000 HE, 15L/s (80% remoção DBO)

Comparação de custo: Lagoa australiana (anaeróbia e facultativa) e Filtro Francês (1ª etapa do Sistema Francês)

- <u>Lagoa australiana:</u> 2,5 a 3 m² /hab. (temperatura média do mês frio).
- Filtro francês: 0,8 m² a 1,0 m²/hab. → 30% menos área
 + vantagens de não gerar odores ou gases com efeito estufa,
 não acumular lodos no meio líquido, sem algas no efluente final.
- <u>Custos de implementação</u>: dependem do local (topografia, solo) etc..
 nas condições específicas: Lagoa australiana cerca
 de 20% acima do custo do Wetland Filtro Francês

A implementação do Filtro Francês como único estágio, em comparação com lagoas de tratamento, apresenta uma opção economicamente competitiva e oferece mais benefícios, inclusive da operação.

Wetland Francês e Filtro Francês: superando a lacuna de tecnologias seguras, robustas, eficientes e econômicas na operação para atender ETEs de menor porte (< 30 L/s) rumo à Universalização do Saneamento.

Parceira do consórcio GWT

Agradecemos a cooperação

www.saneasonline.com.br/noticias/wetland-opcao-sustentavel-e-ambientalmenteamigavel-para-o-tratamento-do-esgoto